These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24760930)

  • 1. Embedded human control of robots using myoelectric interfaces.
    Antuvan CW; Ison M; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):820-7. PubMed ID: 24760930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Density Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot Arm.
    Ison M; Vujaklija I; Whitsell B; Farina D; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):424-33. PubMed ID: 25838524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control.
    Ison M; Artemiadis P
    J Neural Eng; 2014 Oct; 11(5):051001. PubMed ID: 25188509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromyographic correlates of learning during robotic surgical training in virtual reality.
    Suh IH; Mukherjee M; Schrack R; Park SH; Chien JH; Oleynikov D; Siu KC
    Stud Health Technol Inform; 2011; 163():630-4. PubMed ID: 21335869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Position-Independent Decoding of Movement Intention for Proportional Myoelectric Interfaces.
    Park KH; Suk HI; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):928-939. PubMed ID: 26415203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel myoelectric training device for upper limb prostheses.
    Clingman R; Pidcoe P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):879-85. PubMed ID: 24710835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation analysis of electromyogram signals for multiuser myoelectric interfaces.
    Khushaba RN
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):745-55. PubMed ID: 24760933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges.
    Farina D; Jiang N; Rehbaum H; Holobar A; Graimann B; Dietl H; Aszmann OC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):797-809. PubMed ID: 24760934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of the physiological actions of the triphasic EMG pattern by a dynamic recurrent neural network.
    Cheron G; Cebolla AM; Bengoetxea A; Leurs F; Dan B
    Neurosci Lett; 2007 Mar; 414(2):192-6. PubMed ID: 17224236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An EMG-based robot control scheme robust to time-varying EMG signal features.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing practical multifunctional myoelectric applications through implicit motor control training systems.
    Ison M; Artemiadis P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3525-8. PubMed ID: 25570751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.
    Fu KC; Dalla Libera F; Ishiguro H
    Bioinspir Biomim; 2015 Oct; 10(5):056016. PubMed ID: 26448530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control.
    He J; Zhang D; Jiang N; Sheng X; Farina D; Zhu X
    J Neural Eng; 2015 Aug; 12(4):046005. PubMed ID: 26028132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control.
    Scheme E; Lock B; Hargrove L; Hill W; Kuruganti U; Englehart K
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):149-57. PubMed ID: 23475378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoelectric Control System and Task-Specific Characteristics Affect Voluntary Use of Simultaneous Control.
    Smith LH; Kuiken TA; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):109-16. PubMed ID: 25769167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss.
    Segil JL; Huddle SA; Weir RFF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):618-627. PubMed ID: 27390181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.