These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 24760931)

  • 1. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4319-23. PubMed ID: 23366883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol.
    Stango A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive, accurate assessment of the behavior of representative populations of motor units in targeted reinnervated muscles.
    Farina D; Rehbaum H; Holobar A; Vujaklija I; Jiang N; Hofer C; Salminger S; van Vliet HW; Aszmann OC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):810-9. PubMed ID: 24760935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of direct and pattern recognition control for a two degree-of-freedom above elbow virtual prosthesis.
    Toledo C; Simon A; Muñoz R; Vera A; Leija L; Hargrove L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4332-5. PubMed ID: 23366886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.
    Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB
    JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface.
    Huang H; Zhou P; Li G; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):37-45. PubMed ID: 18303804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of ECG interference on pattern-recognition-based myoelectric control for targeted muscle reinnervated patients.
    Hargrove L; Zhou P; Englehart K; Kuiken TA
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2197-201. PubMed ID: 19692302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
    Ortiz-Catalan M; Håkansson B; Brånemark R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):756-64. PubMed ID: 24710833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle reinnervation: a case study.
    Xu Y; Zhang D; Wang Y; Feng J; Xu W
    J Neuroeng Rehabil; 2018 May; 15(1):37. PubMed ID: 29747672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoelectric walking mode classification for transtibial amputees.
    Miller JD; Beazer MS; Hahn ME
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2745-50. PubMed ID: 23708765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation.
    Hargrove LJ; Lock BA; Simon AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1599-602. PubMed ID: 24110008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Improved Gray-Level Co-Occurrence Matrix With High Density Grid for Myoelectric Control Robustness to Electrode Shift.
    He J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1539-1548. PubMed ID: 28026779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis.
    Farmer S; Silver-Thorn S; Voglewede P; Beardsley SA
    J Neural Eng; 2014 Oct; 11(5):056027. PubMed ID: 25246110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.