These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 24760935)
1. Noninvasive, accurate assessment of the behavior of representative populations of motor units in targeted reinnervated muscles. Farina D; Rehbaum H; Holobar A; Vujaklija I; Jiang N; Hofer C; Salminger S; van Vliet HW; Aszmann OC IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):810-9. PubMed ID: 24760935 [TBL] [Abstract][Full Text] [Related]
2. Common Synaptic Input to Motor Neurons and Neural Drive to Targeted Reinnervated Muscles. Farina D; Castronovo AM; Vujaklija I; Sturma A; Salminger S; Hofer C; Aszmann O J Neurosci; 2017 Nov; 37(46):11285-11292. PubMed ID: 29054880 [TBL] [Abstract][Full Text] [Related]
3. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients. Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931 [TBL] [Abstract][Full Text] [Related]
4. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469 [TBL] [Abstract][Full Text] [Related]
5. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. Jia X; Koenig MA; Zhang X; Zhang J; Chen T; Chen Z J Hand Surg Am; 2007; 32(5):657-66. PubMed ID: 17482005 [TBL] [Abstract][Full Text] [Related]
6. Decoding a new neural machine interface for control of artificial limbs. Zhou P; Lowery MM; Englehart KB; Huang H; Li G; Hargrove L; Dewald JP; Kuiken TA J Neurophysiol; 2007 Nov; 98(5):2974-82. PubMed ID: 17728391 [TBL] [Abstract][Full Text] [Related]
7. Decoding Motor Unit Activity From Forearm Muscles: Perspectives for Myoelectric Control. Kapelner T; Negro F; Aszmann OC; Farina D IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):244-251. PubMed ID: 29324410 [TBL] [Abstract][Full Text] [Related]
8. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. Daley H; Englehart K; Hargrove L; Kuruganti U J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773 [TBL] [Abstract][Full Text] [Related]
9. Identification of isometric contractions based on High Density EMG maps. Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519 [TBL] [Abstract][Full Text] [Related]
10. Experimental analysis of accuracy in the identification of motor unit spike trains from high-density surface EMG. Holobar A; Minetto MA; Botter A; Negro F; Farina D IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):221-9. PubMed ID: 20144921 [TBL] [Abstract][Full Text] [Related]
11. Performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients. Tkach DC; Young AJ; Smith LH; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4319-23. PubMed ID: 23366883 [TBL] [Abstract][Full Text] [Related]
12. Real-time motor unit identification from high-density surface EMG. Glaser V; Holobar A; Zazula D IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):949-58. PubMed ID: 23475379 [TBL] [Abstract][Full Text] [Related]
13. A Novel Framework Based on FastICA for High Density Surface EMG Decomposition. Chen M; Zhou P IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):117-27. PubMed ID: 25775496 [TBL] [Abstract][Full Text] [Related]
14. EMG signal decomposition using motor unit potential train validity. Parsaei H; Stashuk DW IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):265-74. PubMed ID: 23033332 [TBL] [Abstract][Full Text] [Related]
15. Decoding motor neuron activity from epimysial thin-film electrode recordings following targeted muscle reinnervation. Muceli S; Bergmeister KD; Hoffmann KP; Aman M; Vukajlija I; Aszmann OC; Farina D J Neural Eng; 2019 Feb; 16(1):016010. PubMed ID: 30524045 [TBL] [Abstract][Full Text] [Related]
16. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
17. Accurate and representative decoding of the neural drive to muscles in humans with multi-channel intramuscular thin-film electrodes. Muceli S; Poppendieck W; Negro F; Yoshida K; Hoffmann KP; Butler JE; Gandevia SC; Farina D J Physiol; 2015 Sep; 593(17):3789-804. PubMed ID: 26174910 [TBL] [Abstract][Full Text] [Related]
18. Adaptive Real-Time Identification of Motor Unit Discharges From Non-Stationary High-Density Surface Electromyographic Signals. Chen C; Ma S; Sheng X; Farina D; Zhu X IEEE Trans Biomed Eng; 2020 Dec; 67(12):3501-3509. PubMed ID: 32324538 [TBL] [Abstract][Full Text] [Related]
19. Decomposition of intramuscular EMG signals using a heuristic fuzzy expert system. Erim Z; Lin W IEEE Trans Biomed Eng; 2008 Sep; 55(9):2180-9. PubMed ID: 18713687 [TBL] [Abstract][Full Text] [Related]
20. Persistent hand motor commands in the amputees' brain. Reilly KT; Mercier C; Schieber MH; Sirigu A Brain; 2006 Aug; 129(Pt 8):2211-23. PubMed ID: 16799174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]