These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 24760942)
1. Feature extraction using extrema sampling of discrete derivatives for spike sorting in implantable upper-limb neural prostheses. Zamani M; Demosthenous A IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):716-26. PubMed ID: 24760942 [TBL] [Abstract][Full Text] [Related]
2. Feature extraction using first and second derivative extrema (FSDE) for real-time and hardware-efficient spike sorting. Paraskevopoulou SE; Barsakcioglu DY; Saberi MR; Eftekhar A; Constandinou TG J Neurosci Methods; 2013 Apr; 215(1):29-37. PubMed ID: 23403106 [TBL] [Abstract][Full Text] [Related]
3. Frequency Band Separability Feature Extraction Method With Weighted Haar Wavelet Implementation for Implantable Spike Sorting. Yang Y; Mason AJ IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):530-538. PubMed ID: 27416601 [TBL] [Abstract][Full Text] [Related]
4. Computationally efficient neural feature extraction for spike sorting in implantable high-density recording systems. Kamboh AM; Mason AJ IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):1-9. PubMed ID: 22899586 [TBL] [Abstract][Full Text] [Related]
6. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. Karlik B; Tokhi MO; Alci M IEEE Trans Biomed Eng; 2003 Nov; 50(11):1255-61. PubMed ID: 14619995 [TBL] [Abstract][Full Text] [Related]
7. Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction. Gibson S; Judy JW; Marković D IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):469-78. PubMed ID: 20525534 [TBL] [Abstract][Full Text] [Related]
8. Spike sorting using locality preserving projection with gap statistics and landmark-based spectral clustering. Nguyen T; Khosravi A; Creighton D; Nahavandi S J Neurosci Methods; 2014 Dec; 238():43-53. PubMed ID: 25256647 [TBL] [Abstract][Full Text] [Related]
9. A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. Chae MS; Yang Z; Yuce MR; Hoang L; Liu W IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):312-21. PubMed ID: 19435684 [TBL] [Abstract][Full Text] [Related]
10. Unsupervised and real-time spike sorting chip for neural signal processing in hippocampal prosthesis. Xu H; Han Y; Han X; Xu J; Lin S; Cheung RCC J Neurosci Methods; 2019 Jan; 311():111-121. PubMed ID: 30339881 [TBL] [Abstract][Full Text] [Related]
11. EMG signal decomposition using motor unit potential train validity. Parsaei H; Stashuk DW IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):265-74. PubMed ID: 23033332 [TBL] [Abstract][Full Text] [Related]
12. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control. Hargrove LJ; Li G; Englehart KB; Hudgins BS IEEE Trans Biomed Eng; 2009 May; 56(5):1407-14. PubMed ID: 19473932 [TBL] [Abstract][Full Text] [Related]
13. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol. Stango A; Negro F; Farina D IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242 [TBL] [Abstract][Full Text] [Related]
14. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling. Keshtkaran MR; Yang Z J Neural Eng; 2017 Jun; 14(3):036003. PubMed ID: 28198354 [TBL] [Abstract][Full Text] [Related]
15. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms. Ortiz-Catalan M; Håkansson B; Brånemark R IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):756-64. PubMed ID: 24710833 [TBL] [Abstract][Full Text] [Related]
16. A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. Huang Y; Englehart KB; Hudgins B; Chan AD IEEE Trans Biomed Eng; 2005 Nov; 52(11):1801-11. PubMed ID: 16285383 [TBL] [Abstract][Full Text] [Related]
17. EMG and ENG-envelope pattern recognition for prosthetic hand control. Noce E; Dellacasa Bellingegni A; Ciancio AL; Sacchetti R; Davalli A; Guglielmelli E; Zollo L J Neurosci Methods; 2019 Jan; 311():38-46. PubMed ID: 30316891 [TBL] [Abstract][Full Text] [Related]
18. Continuous myoelectric control for powered prostheses using hidden Markov models. Chan AD; Englehart KB IEEE Trans Biomed Eng; 2005 Jan; 52(1):121-4. PubMed ID: 15651571 [TBL] [Abstract][Full Text] [Related]
19. Analysis and classification of compressed EMG signals by wavelet transform via alternative neural networks algorithms. Ozsert M; Yavuz O; Durak-Ata L Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):521-5. PubMed ID: 20645198 [TBL] [Abstract][Full Text] [Related]
20. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients. Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]