BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24760965)

  • 1. Physiological impact of transposable elements encoding DDE transposases in the environmental adaptation of Streptococcus agalactiae.
    Fléchard M; Gilot P
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1298-1315. PubMed ID: 24760965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atypical association of DDE transposition with conjugation specifies a new family of mobile elements.
    Brochet M; Da Cunha V; Couvé E; Rusniok C; Trieu-Cuot P; Glaser P
    Mol Microbiol; 2009 Feb; 71(4):948-59. PubMed ID: 19183283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horizontal gene transfer and host specificity of beta-haemolytic streptococci: the role of a putative composite transposon containing scpB and lmb.
    Franken C; Haase G; Brandt C; Weber-Heynemann J; Martin S; Lämmler C; Podbielski A; Lütticken R; Spellerberg B
    Mol Microbiol; 2001 Aug; 41(4):925-35. PubMed ID: 11532154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of virulence factors and capsular types of Streptococcus agalactiae isolated from human and bovine infections.
    Emaneini M; Khoramian B; Jabalameli F; Abani S; Dabiri H; Beigverdi R
    Microb Pathog; 2016 Feb; 91():1-4. PubMed ID: 26593104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual and divergent transcriptional impact of IS1548 insertion upstream of the peptidoglycan biosynthesis gene murB of Streptococcus agalactiae.
    Khazaal S; Al Safadi R; Osman D; Hiron A; Gilot P
    Gene; 2019 Dec; 720():144094. PubMed ID: 31476407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries.
    Guérillot R; Siguier P; Gourbeyre E; Chandler M; Glaser P
    Genome Biol Evol; 2014 Feb; 6(2):260-72. PubMed ID: 24418649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. phiD12-Like Livestock-Associated Prophages Are Associated With Novel Subpopulations of
    Renard A; Barbera L; Courtier-Martinez L; Dos Santos S; Valentin AS; Mereghetti L; Quentin R; van der Mee-Marquet NL
    Front Cell Infect Microbiol; 2019; 9():166. PubMed ID: 31192160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae.
    Richards VP; Lang P; Bitar PD; Lefébure T; Schukken YH; Zadoks RN; Stanhope MJ
    Infect Genet Evol; 2011 Aug; 11(6):1263-75. PubMed ID: 21536150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and identification of IS1548 insertion targets in Streptococcus agalactiae.
    Fléchard M; Gilot P; Héry-Arnaud G; Mereghetti L; Rosenau A
    FEMS Microbiol Lett; 2013 Mar; 340(1):65-72. PubMed ID: 23305302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors.
    Rosini R; Margarit I
    Front Cell Infect Microbiol; 2015; 5():6. PubMed ID: 25699242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease.
    Glaser P; Rusniok C; Buchrieser C; Chevalier F; Frangeul L; Msadek T; Zouine M; Couvé E; Lalioui L; Poyart C; Trieu-Cuot P; Kunst F
    Mol Microbiol; 2002 Sep; 45(6):1499-513. PubMed ID: 12354221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group B streptococcal haemolysin and pigment, a tale of twins.
    Rosa-Fraile M; Dramsi S; Spellerberg B
    FEMS Microbiol Rev; 2014 Sep; 38(5):932-46. PubMed ID: 24617549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface proteins of Streptococcus agalactiae and horizontal gene transfer.
    Bröker G; Spellerberg B
    Int J Med Microbiol; 2004 Sep; 294(2-3):169-75. PubMed ID: 15493827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomic analysis and identification of pathogenicity islands of hypervirulent ST-17 Streptococcus agalactiae Brazilian strain.
    Lannes-Costa PS; Baraúna RA; Ramos JN; Veras JFC; Conceição MVR; Vieira VV; de Mattos-Guaraldi AL; Ramos RTJ; Doran KS; Silva A; Nagao PE
    Infect Genet Evol; 2020 Jun; 80():104195. PubMed ID: 31954181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population structure, virulence factors and resistance determinants of invasive, non-invasive and colonizing Streptococcus agalactiae in Poland.
    Sadowy E; Matynia B; Hryniewicz W
    J Antimicrob Chemother; 2010 Sep; 65(9):1907-14. PubMed ID: 20584746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a new CAMP factor carried by an integrative and conjugative element in Streptococcus agalactiae and spreading in Streptococci.
    Chuzeville S; Puymège A; Madec JY; Haenni M; Payot S
    PLoS One; 2012; 7(11):e48918. PubMed ID: 23152820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-dependent endogenous gene regulation is required for virulence in piscine
    Dong Y; Ma K; Cao Q; Huang H; Nie M; Liu G; Jiang M; Lu C; Liu Y
    Emerg Microbes Infect; 2021 Dec; 10(1):2113-2124. PubMed ID: 34727007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of RogB-controlled virulence mechanisms and gene repression in Streptococcus agalactiae.
    Gutekunst H; Eikmanns BJ; Reinscheid DJ
    Infect Immun; 2003 Sep; 71(9):5056-64. PubMed ID: 12933848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a small mobilizable transposon, MTnSag1, in Streptococcus agalactiae.
    Achard A; Leclercq R
    J Bacteriol; 2007 Jun; 189(11):4328-31. PubMed ID: 17416666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ISSag1 in streptococcal strains of human and animal origin.
    Franken C; Brandt C; Bröker G; Spellerberg B
    Int J Med Microbiol; 2004 Oct; 294(4):247-54. PubMed ID: 15532982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.