These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2476125)

  • 41. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probes of the conduction process of a voltage-gated Cl- channel from Torpedo electroplax.
    White MM; Miller C
    J Gen Physiol; 1981 Jul; 78(1):1-18. PubMed ID: 6265592
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical oscillation and fluctuation in phospholipid membranes. Phospholipids can form a channel without protein.
    Yoshikawa K; Fujimoto T; Shimooka T; Terada H; Kumazawa N; Ishii T
    Biophys Chem; 1988 Apr; 29(3):293-9. PubMed ID: 2455554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels.
    Si W; Li ZT; Hou JL
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4578-81. PubMed ID: 24683053
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polarity-dependent voltage-gated porin channels from Escherichia coli in lipid bilayer membranes.
    Morgan H; Lonsdale JT; Alder G
    Biochim Biophys Acta; 1990 Jan; 1021(2):175-81. PubMed ID: 1689179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ion channel formation by synthetic transmembrane segments of the inhibitory glycine receptor--a model study.
    Langosch D; Hartung K; Grell E; Bamberg E; Betz H
    Biochim Biophys Acta; 1991 Mar; 1063(1):36-44. PubMed ID: 1707671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wasp venom peptides; wasp kinins, new cytotrophic peptide families and their physico-chemical properties.
    Nakajima T; Yasuhara T; Uzu S; Wakamatsu K; Miyazawa T; Fukuda K; Tsukamoto Y
    Peptides; 1985; 6 Suppl 3():425-30. PubMed ID: 3831970
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Membrane damage by a toxin from the sea anemone Stoichactis helianthus. I. Formation of transmembrane channels in lipid bilayers.
    Michaels DW
    Biochim Biophys Acta; 1979 Jul; 555(1):67-78. PubMed ID: 38841
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ion-channels reconstituted into lipid bilayer from human sperm plasma membrane.
    Shi YL; Ma XH
    Mol Reprod Dev; 1998 Jul; 50(3):354-60. PubMed ID: 9621312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Voltage-dependent pore activity of the peptide alamethicin correlated with incorporation in the membrane: salt and cholesterol effects.
    Stankowski S; Schwarz UD; Schwarz G
    Biochim Biophys Acta; 1988 Jun; 941(1):11-8. PubMed ID: 2453215
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blepharismins, produced by the protozoan, Blepharisma japonicum, form ion-permeable channels in planar lipid bilayer membranes.
    Muto Y; Matsuoka T; Kida A; Okano Y; Kirino Y
    FEBS Lett; 2001 Nov; 508(3):423-6. PubMed ID: 11728465
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zervamicins, a structurally characterised peptide model for membrane ion channels.
    Agarwalla S; Mellor IR; Sansom MS; Karle IL; Flippen-Anderson JL; Uma K; Krishna K; Sukumar M; Balaram P
    Biochem Biophys Res Commun; 1992 Jul; 186(1):8-15. PubMed ID: 1378732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anti-inflammatory activity of bee venom peptide 401 (mast cell degranulating peptide) and compound 48/80 results from mast cell degranulation in vivo.
    Banks BE; Dempsey CE; Vernon CA; Warner JA; Yamey J
    Br J Pharmacol; 1990 Feb; 99(2):350-4. PubMed ID: 2328399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Ionic selectivity of melittin-modified flat lipid bilayers].
    Sabirov RZ; Krasil'nikov OV; Kostrzhevskaia EG
    Ukr Biokhim Zh (1978); 1990; 62(1):82-7. PubMed ID: 1692430
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gating of large toxin channels by pH.
    Hoch DH; Finkelstein A
    Ann N Y Acad Sci; 1985; 456():33-5. PubMed ID: 2418731
    [No Abstract]   [Full Text] [Related]  

  • 57. Channels produced by spider venoms in bilayer lipid membrane: mechanisms of ion transport and toxic action.
    Mironov SL; Sokolov YuV ; Chanturiya AN; Lishko VK
    Biochim Biophys Acta; 1986 Nov; 862(1):185-98. PubMed ID: 2429700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle.
    Latorre R; Vergara C; Hidalgo C
    Proc Natl Acad Sci U S A; 1982 Feb; 79(3):805-9. PubMed ID: 6278496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength.
    Anderson CS; MacKinnon R; Smith C; Miller C
    J Gen Physiol; 1988 Mar; 91(3):317-33. PubMed ID: 2454282
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells.
    Fasolato C; Hoth M; Matthews G; Penner R
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):3068-72. PubMed ID: 7681994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.