These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24761778)

  • 1. Stabilizing catalytically active nanoparticles by ligand linking: toward three-dimensional networks with high catalytic surface area.
    Morsbach E; Spéder J; Arenz M; Brauns E; Lang W; Kunz S; Bäumer M
    Langmuir; 2014 May; 30(19):5564-73. PubMed ID: 24761778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-stabilized Pt nanoparticles (NPs) as novel materials for catalytic gas sensing: influence of the ligand on important catalytic properties.
    Morsbach E; Brauns E; Kowalik T; Lang W; Kunz S; Bäumer M
    Phys Chem Chem Phys; 2014 Oct; 16(39):21243-51. PubMed ID: 25188310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.
    Speder J; Altmann L; Roefzaad M; Bäumer M; Kirkensgaard JJ; Mortensen K; Arenz M
    Phys Chem Chem Phys; 2013 Mar; 15(10):3602-8. PubMed ID: 23381718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.
    Gutzler R; Stepanow S; Grumelli D; Lingenfelder M; Kern K
    Acc Chem Res; 2015 Jul; 48(7):2132-9. PubMed ID: 26121410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of supported metal nanoparticle catalysts using ligand assisted methods.
    Costa NJ; Rossi LM
    Nanoscale; 2012 Sep; 4(19):5826-34. PubMed ID: 22915064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-induced structural evolution of Pt55 nanoparticles: amine versus thiol.
    Ryu JH; Han SS; Kim DH; Henkelman G; Lee HM
    ACS Nano; 2011 Nov; 5(11):8515-22. PubMed ID: 21962127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Ligand Interactions and Their Roles in Controlling Nanoparticle Formation and Functions.
    Guan H; Harris C; Sun S
    Acc Chem Res; 2023 Jun; 56(12):1591-1601. PubMed ID: 37205747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Characterization of Ligand-Linked Pt Nanoparticles: Tunable, Three-Dimensional, Porous Networks for Catalytic Hydrogen Sensing.
    Loof D; Thüringer O; Schowalter M; Mahr C; Pranti AS; Lang W; Rosenauer A; Zielasek V; Kunz S; Bäumer M
    ChemistryOpen; 2021 Jul; 10(7):697-712. PubMed ID: 34251087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From ligand-stabilized gold nanoparticles to hybrid organic-inorganic superstructures.
    Hermes JP; Sanders F; Peterle T; Mayor M
    Chimia (Aarau); 2011; 65(4):219-22. PubMed ID: 21678765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symbiosis between photoactive nanoparticles and their organic ligands.
    Pérez-Prieto J
    Photochem Photobiol; 2013; 89(6):1291-8. PubMed ID: 23742191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-soluble surface-anchored gold and palladium nanoparticles stabilized by exchange of low molecular weight ligands with biamphiphilic triblock copolymers.
    Azzam T; Bronstein L; Eisenberg A
    Langmuir; 2008 Jun; 24(13):6521-9. PubMed ID: 18484759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane.
    Hu J; Chen Z; Li M; Zhou X; Lu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13191-200. PubMed ID: 25036741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible steric control of the relative strength of chelation enhanced fluorescence for zinc(II) compared to cadmium(II): metal ion complexing properties of tris(2-quinolylmethyl)amine, a crystallographic, UV-visible, and fluorometric study.
    Williams NJ; Gan W; Reibenspies JH; Hancock RD
    Inorg Chem; 2009 Feb; 48(4):1407-15. PubMed ID: 19143497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces.
    da Silva FP; Fiorio JL; Rossi LM
    ACS Omega; 2017 Sep; 2(9):6014-6022. PubMed ID: 31457853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design, characterization and catalytic application of metal clusters functionalized with hydrophilic, chiral ligands: a proof of principle study.
    Kunz S; Schreiber P; Ludwig M; Maturi MM; Ackermann O; Tschurl M; Heiz U
    Phys Chem Chem Phys; 2013 Nov; 15(44):19253-61. PubMed ID: 24113576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications.
    Zhang J; Chaker M; Ma D
    J Colloid Interface Sci; 2017 Mar; 489():138-149. PubMed ID: 27554172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, synthesis, and characterization of mesogenic amine-capped nematic gold nanoparticles with surface-enhanced plasmonic resonances.
    Yu CH; Schubert CP; Welch C; Tang BJ; Tamba MG; Mehl GH
    J Am Chem Soc; 2012 Mar; 134(11):5076-9. PubMed ID: 22390286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between catalytic activity and surface ligands of monolayer protected gold nanoparticles.
    Biswas M; Dinda E; Rashid MH; Mandal TK
    J Colloid Interface Sci; 2012 Feb; 368(1):77-85. PubMed ID: 22197055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.