These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 24761789)
21. Sublethal exposure to deltamethrin reduces the abilities of giant water bugs to prey upon Aedes aegypti larvae. Valbon WR; Cruz FM; Ramos GS; Tomé HVV; Oliveira EE Chemosphere; 2018 Jan; 191():350-356. PubMed ID: 29049958 [TBL] [Abstract][Full Text] [Related]
22. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. Ragavendran C; Natarajan D Environ Sci Pollut Res Int; 2015 Nov; 22(21):17224-37. PubMed ID: 26139412 [TBL] [Abstract][Full Text] [Related]
23. Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus resistant to DDT and deltamethrin in the Central African Republic. Ngoagouni C; Kamgang B; Brengues C; Yahouedo G; Paupy C; Nakouné E; Kazanji M; Chandre F Parasit Vectors; 2016 Nov; 9(1):599. PubMed ID: 27881148 [TBL] [Abstract][Full Text] [Related]
24. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. Vasantha-Srinivasan P; Thanigaivel A; Edwin ES; Ponsankar A; Senthil-Nathan S; Selin-Rani S; Kalaivani K; Hunter WB; Duraipandiyan V; Al-Dhabi NA Environ Sci Pollut Res Int; 2018 Apr; 25(11):10434-10446. PubMed ID: 28852982 [TBL] [Abstract][Full Text] [Related]
25. Resistance to commonly used insecticides and underlying mechanisms of resistance in Aedes aegypti (L.) from Sri Lanka. Fernando HSD; Saavedra-Rodriguez K; Perera R; Black WC; De Silva BGDNK Parasit Vectors; 2020 Aug; 13(1):407. PubMed ID: 32778147 [TBL] [Abstract][Full Text] [Related]
26. Temporal frequency of knockdown resistance mutations, F1534C and V1016G, in Aedes aegypti in Chiang Mai city, Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids. Plernsub S; Saingamsook J; Yanola J; Lumjuan N; Tippawangkosol P; Walton C; Somboon P Acta Trop; 2016 Oct; 162():125-132. PubMed ID: 27325294 [TBL] [Abstract][Full Text] [Related]
27. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. Bisset JA; Marín R; Rodríguez MM; Severson DW; Ricardo Y; French L; Díaz M; Pérez O J Med Entomol; 2013 Mar; 50(2):352-61. PubMed ID: 23540124 [TBL] [Abstract][Full Text] [Related]
28. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Paula AR; Carolino AT; Paula CO; Samuels RI Parasit Vectors; 2011 Jan; 4():8. PubMed ID: 21266078 [TBL] [Abstract][Full Text] [Related]
29. Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Panneerselvam C; Murugan K; Kovendan K; Mahesh Kumar P Parasitol Res; 2012 Dec; 111(6):2241-51. PubMed ID: 22903417 [TBL] [Abstract][Full Text] [Related]
30. Biochemical evidence of efficacy of potash alum for the control of dengue vector Aedes aegypti (Linnaeus). Preet S; Sneha A Parasitol Res; 2011 Jun; 108(6):1533-9. PubMed ID: 21188602 [TBL] [Abstract][Full Text] [Related]
31. Action of Metarhizium brunneum (Hypocreales: Clavicipitaceae) Against Organophosphate- and Pyrethroid-Resistant Aedes aegypti (Diptera: Culicidae) and the Synergistic Effects of Phenylthiourea. Prado R; Macedo-Salles PA; Duprat RC; Baptista ARS; Feder D; Lima JBP; Butt T; Ratcliffe NA; Mello CB J Med Entomol; 2020 Feb; 57(2):454-462. PubMed ID: 31559435 [TBL] [Abstract][Full Text] [Related]
32. Larvicidal effects of fungal Meroterpenoids in the control of Aedes aegypti L., the main vector of dengue and Yellow fever. Geris R; Rodrigues-Fo E; Garcia da Silva HH; Garcia da Silva I Chem Biodivers; 2008 Feb; 5(2):341-5. PubMed ID: 18293447 [TBL] [Abstract][Full Text] [Related]
33. Chemical composition and larvicidal activities of Azolla pinnata extracts against Aedes (Diptera:Culicidae). Ravi R; Zulkrnin NSH; Rozhan NN; Nik Yusoff NR; Mat Rasat MS; Ahmad MI; Ishak IH; Amin MFM PLoS One; 2018; 13(11):e0206982. PubMed ID: 30399167 [TBL] [Abstract][Full Text] [Related]
34. Insecticide resistance, associated mechanisms and fitness aspects in two Brazilian Stegomyia aegypti (= Aedes aegypti) populations. Viana-Medeiros PF; Bellinato DF; Martins AJ; Valle D Med Vet Entomol; 2017 Dec; 31(4):340-350. PubMed ID: 28752548 [TBL] [Abstract][Full Text] [Related]
35. Pseudomonas mosselii: a potential alternative for managing pyrethroid-resistant Aedes aegypti. Leelagud P; Wang HL; Lu KH; Dai SM Pest Manag Sci; 2024 Sep; 80(9):4344-4351. PubMed ID: 38634536 [TBL] [Abstract][Full Text] [Related]
36. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies. Chandramohan B; Murugan K; Panneerselvam C; Madhiyazhagan P; Chandirasekar R; Dinesh D; Kumar PM; Kovendan K; Suresh U; Subramaniam J; Rajaganesh R; Aziz AT; Syuhei B; Alsalhi MS; Devanesan S; Nicoletti M; Wei H; Benelli G Parasitol Res; 2016 Mar; 115(3):1015-25. PubMed ID: 26573518 [TBL] [Abstract][Full Text] [Related]
37. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Sundaravadivelan C; Padmanabhan MN Environ Sci Pollut Res Int; 2014 Mar; 21(6):4624-33. PubMed ID: 24352539 [TBL] [Abstract][Full Text] [Related]
38. Trypsin inhibitor from Moringa oleifera flowers interferes with survival and development of Aedes aegypti larvae and kills bacteria inhabitant of larvae midgut. Pontual EV; de Lima Santos ND; de Moura MC; Coelho LC; do Amaral Ferraz Navarro DM; Napoleão TH; Paiva PM Parasitol Res; 2014 Feb; 113(2):727-33. PubMed ID: 24271154 [TBL] [Abstract][Full Text] [Related]
39. Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae). Reegan AD; Gandhi MR; Paulraj MG; Balakrishna K; Ignacimuthu S Acta Trop; 2014 Nov; 139():67-76. PubMed ID: 25019220 [TBL] [Abstract][Full Text] [Related]
40. Pyrethroid resistance persists after ten years without usage against Aedes aegypti in governmental campaigns: Lessons from São Paulo State, Brazil. Macoris ML; Martins AJ; Andrighetti MTM; Lima JBP; Valle D PLoS Negl Trop Dis; 2018 Mar; 12(3):e0006390. PubMed ID: 29601580 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]