These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24762084)

  • 1. Nanostructured clathrate phonon glasses: beyond the rattling concept.
    He Y; Galli G
    Nano Lett; 2014 May; 14(5):2920-5. PubMed ID: 24762084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unconventional Clathrates with Transition Metal-Phosphorus Frameworks.
    Wang J; Dolyniuk JA; Kovnir K
    Acc Chem Res; 2018 Jan; 51(1):31-39. PubMed ID: 29256588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of rattlers on thermal conductivity of a thermoelectric clathrate: a first-principles study.
    Tadano T; Gohda Y; Tsuneyuki S
    Phys Rev Lett; 2015 Mar; 114(9):095501. PubMed ID: 25793824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of the lattice thermal conductivity in Ge framework semiconductors.
    Dong J; Sankey OF; Myles CW
    Phys Rev Lett; 2001 Mar; 86(11):2361-4. PubMed ID: 11289929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deviation from guest dominated glass like lattice dynamics in prototypical ternary Ba
    Bhattacharya A
    J Phys Condens Matter; 2020 Apr; 32(17):175502. PubMed ID: 31935696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guest-framework interaction in type I inorganic clathrates with promising thermoelectric properties: on the ionic versus neutral nature of the alkaline-earth metal guest A in A8Ga16Ge30 (A=Sr, Ba).
    Gatti C; Bertini L; Blake NP; Iversen BB
    Chemistry; 2003 Sep; 9(18):4556-68. PubMed ID: 14502642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartic Anharmonicity of Rattlers and Its Effect on Lattice Thermal Conductivity of Clathrates from First Principles.
    Tadano T; Tsuneyuki S
    Phys Rev Lett; 2018 Mar; 120(10):105901. PubMed ID: 29570340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Type II Silicon Clathrate with Lithium Guests through Thermal Diffusion.
    Liu Y; Briggs JP; Majid AAA; Furtak TE; Walker M; Singh M; Koh CA; Taylor PC; Collins RT
    Inorg Chem; 2023 May; 62(18):6882-6892. PubMed ID: 36715366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ternary multicomponent Ba/Mg/Si compounds with inherent bonding hierarchy and rattling Ba atoms toward low lattice thermal conductivity.
    Li J; Yang J; Shi B; Zhai W; Zhang C; Yan Y; Liu PF
    Phys Chem Chem Phys; 2020 Sep; 22(33):18556-18561. PubMed ID: 32785329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba
    Dolyniuk JA; Zaikina JV; Kaseman DC; Sen S; Kovnir K
    Angew Chem Int Ed Engl; 2017 Feb; 56(9):2418-2422. PubMed ID: 28097775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Trick for an Old Dog: From Prediction to Properties of "Hidden Clathrates" Ba
    Yox P; Cerasoli F; Sarkar A; Kyveryga V; Viswanathan G; Donadio D; Kovnir K
    J Am Chem Soc; 2023 Mar; 145(8):4638-4646. PubMed ID: 36787623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anharmonic motions of Kr in the clathrate hydrate.
    Tse JS; Klug DD; Zhao JY; Sturhahn W; Alp EE; Baumert J; Gutt C; Johnson MR; Press W
    Nat Mater; 2005 Dec; 4(12):917-21. PubMed ID: 16267573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermopower enhancement by encapsulating cerium in clathrate cages.
    Prokofiev A; Sidorenko A; Hradil K; Ikeda M; Svagera R; Waas M; Winkler H; Neumaier K; Paschen S
    Nat Mater; 2013 Dec; 12(12):1096-101. PubMed ID: 24056804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retreat from Stress: Rattling in a Planar Coordination.
    Suekuni K; Lee CH; Tanaka HI; Nishibori E; Nakamura A; Kasai H; Mori H; Usui H; Ochi M; Hasegawa T; Nakamura M; Ohira-Kawamura S; Kikuchi T; Kaneko K; Nishiate H; Hashikuni K; Kosaka Y; Kuroki K; Takabatake T
    Adv Mater; 2018 Mar; 30(13):e1706230. PubMed ID: 29388262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homo- and heterovalent substitutions in the new clathrates I Si30P16Te(8-x)Se(x) and Si(30+x)P(16-x)Te(8-x)Br(x): synthesis, crystal structure, and thermoelectric properties.
    Abramchuk NS; Carrillo-Cabrera W; Veremchuk I; Oeschler N; Olenev AV; Prots Y; Burkhardt U; Dikarev EV; Grin J; Shevelkov AV
    Inorg Chem; 2012 Nov; 51(21):11396-405. PubMed ID: 23072375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kondo-like phonon scattering in thermoelectric clathrates.
    Ikeda MS; Euchner H; Yan X; Tomeš P; Prokofiev A; Prochaska L; Lientschnig G; Svagera R; Hartmann S; Gati E; Lang M; Paschen S
    Nat Commun; 2019 Feb; 10(1):887. PubMed ID: 30792390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydride Synthesis and Thermoelectric Properties of Type-I Clathrate K
    Perez CJ; Bates VJ; Kauzlarich SM
    Inorg Chem; 2019 Jan; 58(2):1442-1450. PubMed ID: 30589252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type VIII Si based clathrates: prospects for a giant thermoelectric power factor.
    Norouzzadeh P; Krasinski JS; Myles CW; Vashaee D
    Phys Chem Chem Phys; 2015 Apr; 17(14):8850-9. PubMed ID: 25744661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural principles and amorphouslike thermal conductivity of Na-doped Si clathrates.
    Tse JS; Uehara K; Rousseau R; Ker A; Ratcliffe CI; White MA; MacKay G
    Phys Rev Lett; 2000 Jul; 85(1):114-7. PubMed ID: 10991172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency thermoelectric Ba
    Wang J; Lebedev OI; Lee K; Dolyniuk JA; Klavins P; Bux S; Kovnir K
    Chem Sci; 2017 Dec; 8(12):8030-8038. PubMed ID: 29568451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.