These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2476222)

  • 1. A possible role of chromatin and tightly-bound chromatin proteins on enzyme-catalyzed methylation of DNA.
    Strom R; Caiafa P; Mastrantonio S; Rispoli M; Reale A; Attinà M; Cacace F
    Cell Biophys; 1989; 15(1-2):149-57. PubMed ID: 2476222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do tightly-bound chromatin proteins play a role in DNA methylation?
    Caiafa P; Mastrantonio S; Attina M; Rispoli M; Reale A; Strom R
    Biochem Int; 1988 Nov; 17(5):863-75. PubMed ID: 3254163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization, in human placenta, of the tightly bound form of DNA methylase in the higher order of chromatin organization.
    Caiafa P; Mastrantonio S; Cacace F; Attinà M; Rispoli M; Strom R
    Biochim Biophys Acta; 1988 Nov; 951(1):191-200. PubMed ID: 3191132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histones and DNA methylation in mammalian chromatin. II. Presence of non-inhibitory tightly-bound histones.
    Caiafa P; Reale A; D'Erme M; Allegra P; Santoro R; Strom R
    Biochim Biophys Acta; 1991 Dec; 1129(1):43-8. PubMed ID: 1756179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of H1 histone isoforms on the methylation of single- or double-stranded DNA.
    Santoro R; D'Erme M; Reale A; Strom R; Caiafa P
    Biochem Biophys Res Commun; 1993 Jan; 190(1):86-91. PubMed ID: 8422263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA methylation in eukaryotes.
    Adams RL; Burdon RH
    CRC Crit Rev Biochem; 1982; 13(4):349-84. PubMed ID: 6185274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-soluble tightly-bound chromatin proteins and DNA methylation.
    Reale A; Rispoli M; D'Erme M; Caiafa P; Strom R
    Ital J Biochem; 1989; 38(6):392A-394A. PubMed ID: 2630516
    [No Abstract]   [Full Text] [Related]  

  • 8. Measurement of DNA methylase activity by tritium release from DNA cytosine.
    Whitehead EP; Taddeo B; Stampeggioni E; Palitti F; Carotti D
    Cell Biophys; 1989; 15(1-2):145-7. PubMed ID: 2476221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histones and DNA methylation in mammalian chromatin. Differential inhibition by histone H1.
    Caiafa P; Reale A; Allegra P; Rispoli M; D'Erme M; Strom R
    Biochim Biophys Acta; 1991 Aug; 1090(1):38-42. PubMed ID: 1883842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel procedure for the detection of 5-methylcytosine.
    Radlińska M; Skowronek K
    Acta Microbiol Pol; 1998; 47(4):327-34. PubMed ID: 10333555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA methylation and chromatin structure.
    Lewis J; Bird A
    FEBS Lett; 1991 Jul; 285(2):155-9. PubMed ID: 1855583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of substrate specificity of the PaeR7 endonuclease: effect of base methylation on the kinetics of cleavage.
    Ghosh SS; Obermiller PS; Kwoh TJ; Gingeras TR
    Nucleic Acids Res; 1990 Sep; 18(17):5063-8. PubMed ID: 2402435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural history of the eukaryotic chromatin protein methylation system.
    Aravind L; Abhiman S; Iyer LM
    Prog Mol Biol Transl Sci; 2011; 101():105-76. PubMed ID: 21507350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The flip side of DNA methylation.
    Verdine GL
    Cell; 1994 Jan; 76(2):197-200. PubMed ID: 8293456
    [No Abstract]   [Full Text] [Related]  

  • 15. A bisulfite method of 5-methylcytosine mapping that minimizes template degradation.
    Raizis AM; Schmitt F; Jost JP
    Anal Biochem; 1995 Mar; 226(1):161-6. PubMed ID: 7785768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bovine thymus satellite I DNA sequences, which are highly methylated, are preferentially located in H1-rich chromatin.
    Davie JR; Delcuve GP
    Biochem Cell Biol; 1988 Apr; 66(4):256-61. PubMed ID: 3401376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 5-methylcytosine content of highly repeated sequences in human DNA.
    Gama-Sosa MA; Wang RY; Kuo KC; Gehrke CW; Ehrlich M
    Nucleic Acids Res; 1983 May; 11(10):3087-95. PubMed ID: 6856456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Distribution of 5-methylcytosine in phage lambda genome methylated by DNA methylase Eco RII].
    Bogdarina IG; Bur'ianov IaI; Baev AA
    Biokhimiia; 1982 Nov; 47(11):1831-4. PubMed ID: 6217847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of thyroid hormones on DNA methylation in rat liver in vivo and in vitro].
    Adylova AT; Umarova BD; Atakhanova BA; Sharkova EV; Nikol'skaia II; Debov SS
    Vopr Med Khim; 1991; 37(1):13-6. PubMed ID: 1858330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of demethylation of 5-methylcytosine in DNA.
    Hamm S; Just G; Lacoste N; Moitessier N; Szyf M; Mamer O
    Bioorg Med Chem Lett; 2008 Feb; 18(3):1046-9. PubMed ID: 18162397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.