These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24762433)

  • 1. Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules.
    Sogabe T; Shoji Y; Ohba M; Yoshida K; Tamaki R; Hong HF; Wu CH; Kuo CT; Tomić S; Okada Y
    Sci Rep; 2014 Apr; 4():4792. PubMed ID: 24762433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Geometrical Shape on the Characteristics of the Multiple InN/In
    Aouami AE; Pérez LM; Feddi K; El-Yadri M; Dujardin F; Suazo MJ; Laroze D; Courel M; Feddi EM
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of growth temperature and quantum structure on InAs/GaAs quantum dot solar cell.
    Park MH; Kim HS; Park SJ; Song JD; Kim SH; Lee YJ; Choi WJ; Park JH
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2955-9. PubMed ID: 24734716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance optimization of In(Ga)As quantum dot intermediate band solar cells.
    Yang G; Liu W; Bao Y; Chen X; Ji C; Wei B; Yang F; Wang X
    Discov Nano; 2023 Apr; 18(1):67. PubMed ID: 37382764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells.
    Nozawa T; Takagi H; Watanabe K; Arakawa Y
    Nano Lett; 2015 Jul; 15(7):4483-7. PubMed ID: 26099362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.
    Wu Y; Yan X; Zhang X; Ren X
    Nanoscale Res Lett; 2018 Feb; 13(1):62. PubMed ID: 29476287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier.
    Wei G; Forrest SR
    Nano Lett; 2007 Jan; 7(1):218-22. PubMed ID: 17212467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of plasmonic quantum-dot-based intermediate band solar cells.
    Foroutan S; Baghban H
    Appl Opt; 2016 May; 55(13):3405-12. PubMed ID: 27140348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications.
    Sarkhoush M; Rasooli Saghai H; Soofi H
    Front Optoelectron; 2022 Oct; 15(1):42. PubMed ID: 36637679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
    Prado SJ; Marques GE; Alcalde AM
    J Phys Condens Matter; 2017 Nov; 29(44):445301. PubMed ID: 28799524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array.
    Hayashi N; Inoue D; Matsumoto M; Matsushita A; Higuchi H; Aya Y; Nakagawa T
    Opt Express; 2015 Jun; 23(11):A594-603. PubMed ID: 26072884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process.
    Liu WS; Chu TF; Huang TH
    Opt Express; 2014 Dec; 22(25):30963-74. PubMed ID: 25607045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided-mode resonance gratings for enhanced mid-infrared absorption in quantum dot intermediate-band solar cells.
    Elsehrawy F; Niemi T; Cappelluti F
    Opt Express; 2018 Mar; 26(6):A352-A359. PubMed ID: 29609305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.
    Lee KT; Yao Y; He J; Fisher B; Sheng X; Lumb M; Xu L; Anderson MA; Scheiman D; Han S; Kang Y; Gumus A; Bahabry RR; Lee JW; Paik U; Bronstein ND; Alivisatos AP; Meitl M; Burroughs S; Hussain MM; Lee JC; Nuzzo RG; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):E8210-E8218. PubMed ID: 27930331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New strategies for colloidal-quantum-dot-based intermediate-band solar cells.
    Califano M; Skibinsky-Gitlin ES; Gómez-Campos FM; Rodríguez-Bolívar S
    J Chem Phys; 2019 Oct; 151(15):154101. PubMed ID: 31640383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of a GaSb/GaAs Quantum Dot Intermediate Band Solar Cell Operating at Maximum Power Point.
    Ramiro I; Villa J; Hwang J; Martin AJ; Millunchick J; Phillips J; Martí A
    Phys Rev Lett; 2020 Dec; 125(24):247703. PubMed ID: 33412043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adiabatic two-step photoexcitation effects in intermediate-band solar cells with quantum dot-in-well structure.
    Asahi S; Kaizu T; Kita T
    Sci Rep; 2019 May; 9(1):7859. PubMed ID: 31133644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of hot-carrier relaxation for realizing ideal quantum-dot intermediate-band solar cells.
    Tex DM; Kamiya I; Kanemitsu Y
    Sci Rep; 2014 Feb; 4():4125. PubMed ID: 24535195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InAs/GaAsSb quantum dot solar cells.
    Hatch S; Wu J; Sablon K; Lam P; Tang M; Jiang Q; Liu H
    Opt Express; 2014 May; 22 Suppl 3():A679-85. PubMed ID: 24922376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation.
    Yamada N; Okamoto K
    Opt Express; 2014 Jan; 22 Suppl 1():A28-34. PubMed ID: 24921997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.