These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24762851)

  • 1. Bayesian analysis for inference of an emerging epidemic: citrus canker in urban landscapes.
    Neri FM; Cook AR; Gibson GJ; Gottwald TR; Gilligan CA
    PLoS Comput Biol; 2014 Apr; 10(4):e1003587. PubMed ID: 24762851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence-based controls for epidemics using spatio-temporal stochastic models in a Bayesian framework.
    Adrakey HK; Streftaris G; Cunniffe NJ; Gottwald TR; Gilligan CA; Gibson GJ
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29187634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal strategies for the eradication of asiatic citrus canker in heterogeneous host landscapes.
    Parnell S; Gottwald TR; van den Bosch F; Gilligan CA
    Phytopathology; 2009 Dec; 99(12):1370-6. PubMed ID: 19900003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervised learning and prediction of spatial epidemics.
    Pokharel G; Deardon R
    Spat Spatiotemporal Epidemiol; 2014 Oct; 11():59-77. PubMed ID: 25457597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian inference for an emerging arboreal epidemic in the presence of control.
    Parry M; Gibson GJ; Parnell S; Gottwald TR; Irey MS; Gast TC; Gilligan CA
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6258-62. PubMed ID: 24711393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing the effect of alternative intervention strategies on historic epidemics.
    Cook AR; Gibson GJ; Gottwald TR; Gilligan CA
    J R Soc Interface; 2008 Oct; 5(27):1203-13. PubMed ID: 18302995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus.
    Korostil IA; Peters GW; Cornebise J; Regan DG
    Stat Med; 2013 May; 32(11):1917-53. PubMed ID: 22961869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the spread and mitigation of an emerging vector-borne pathogen: Citrus greening in the U.S.
    Nguyen VA; Bartels DW; Gilligan CA
    PLoS Comput Biol; 2023 Jun; 19(6):e1010156. PubMed ID: 37267376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographically dependent individual-level models for infectious diseases transmission.
    Mahsin MD; Deardon R; Brown P
    Biostatistics; 2022 Jan; 23(1):1-17. PubMed ID: 32118253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling under-reporting in epidemics.
    Gamado KM; Streftaris G; Zachary S
    J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods.
    O'Neill PD
    Math Biosci; 2002; 180():103-14. PubMed ID: 12387918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian model choice for epidemic models with two levels of mixing.
    Knock ES; O'Neill PD
    Biostatistics; 2014 Jan; 15(1):46-59. PubMed ID: 23887980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to real-time risk prediction for emerging infectious diseases: a case study in Avian Influenza H5N1.
    Jewell CP; Kypraios T; Christley RM; Roberts GO
    Prev Vet Med; 2009 Sep; 91(1):19-28. PubMed ID: 19535161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidemic prediction of dengue fever based on vector compartment model and Markov chain Monte Carlo method.
    Lee CH; Chang K; Chen YM; Tsai JT; Chen YJ; Ho WH
    BMC Bioinformatics; 2021 Nov; 22(Suppl 5):118. PubMed ID: 34749630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian analysis of botanical epidemics using stochastic compartmental models.
    Gibson GJ; Kleczkowski A; Gilligan CA
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12120-4. PubMed ID: 15302941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks.
    Conesa D; Martínez-Beneito MA; Amorós R; López-Quílez A
    Stat Methods Med Res; 2015 Apr; 24(2):206-23. PubMed ID: 21873301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A versatile web app for identifying the drivers of COVID-19 epidemics.
    Getz WM; Salter R; Luisa Vissat L; Horvitz N
    J Transl Med; 2021 Mar; 19(1):109. PubMed ID: 33726787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches.
    Li M; Dushoff J; Bolker BM
    Stat Methods Med Res; 2018 Jul; 27(7):1956-1967. PubMed ID: 29846150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating a Markovian epidemic model using household serial interval data from the early phase of an epidemic.
    Black AJ; Ross JV
    PLoS One; 2013; 8(8):e73420. PubMed ID: 24023679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Bayesian risk prediction for epidemics using contact tracing.
    Jewell CP; Roberts GO
    Biostatistics; 2012 Sep; 13(4):567-79. PubMed ID: 22674466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.