BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24763051)

  • 1. A gain-of-function mutant p53-HSF1 feed forward circuit governs adaptation of cancer cells to proteotoxic stress.
    Li D; Yallowitz A; Ozog L; Marchenko N
    Cell Death Dis; 2014 Apr; 5(4):e1194. PubMed ID: 24763051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer.
    Schulz R; Streller F; Scheel AH; Rüschoff J; Reinert MC; Dobbelstein M; Marchenko ND; Moll UM
    Cell Death Dis; 2014 Jan; 5(1):e980. PubMed ID: 24384723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis.
    Chou SD; Prince T; Gong J; Calderwood SK
    PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock factor 1 confers resistance to lapatinib in ERBB2-positive breast cancer cells.
    Yallowitz A; Ghaleb A; Garcia L; Alexandrova EM; Marchenko N
    Cell Death Dis; 2018 May; 9(6):621. PubMed ID: 29799521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ErbB2 inhibition by lapatinib promotes degradation of mutant p53 protein in cancer cells.
    Li D; Marchenko ND
    Oncotarget; 2017 Jan; 8(4):5823-5833. PubMed ID: 27791982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity.
    Isermann T; Şener ÖÇ; Stender A; Klemke L; Winkler N; Neesse A; Li J; Wegwitz F; Moll UM; Schulz-Heddergott R
    Nat Commun; 2021 Jun; 12(1):4019. PubMed ID: 34188043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic proteotoxic stress levels vary and act as a predictive marker for sensitivity of cancer cells to Hsp90 inhibition.
    Pastorek M; Muller P; Coates PJ; Vojtesek B
    PLoS One; 2018; 13(8):e0202758. PubMed ID: 30138434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding.
    Wang X; Khaleque MA; Zhao MJ; Zhong R; Gaestel M; Calderwood SK
    J Biol Chem; 2006 Jan; 281(2):782-91. PubMed ID: 16278218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins.
    Wei S; Wang H; Lu C; Malmut S; Zhang J; Ren S; Yu G; Wang W; Tang DD; Yan C
    J Biol Chem; 2014 Mar; 289(13):8947-59. PubMed ID: 24554706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast.
    Leach MD; Budge S; Walker L; Munro C; Cowen LE; Brown AJ
    PLoS Pathog; 2012 Dec; 8(12):e1003069. PubMed ID: 23300438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein phosphatase 5 is a negative modulator of heat shock factor 1.
    Conde R; Xavier J; McLoughlin C; Chinkers M; Ovsenek N
    J Biol Chem; 2005 Aug; 280(32):28989-96. PubMed ID: 15967796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity.
    Truman AW; Millson SH; Nuttall JM; Mollapour M; Prodromou C; Piper PW
    Eukaryot Cell; 2007 Apr; 6(4):744-52. PubMed ID: 17293484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes.
    Ali A; Bharadwaj S; O'Carroll R; Ovsenek N
    Mol Cell Biol; 1998 Sep; 18(9):4949-60. PubMed ID: 9710578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment.
    Alexandrova EM; Yallowitz AR; Li D; Xu S; Schulz R; Proia DA; Lozano G; Dobbelstein M; Moll UM
    Nature; 2015 Jul; 523(7560):352-6. PubMed ID: 26009011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth.
    Zhao YH; Zhou M; Liu H; Ding Y; Khong HT; Yu D; Fodstad O; Tan M
    Oncogene; 2009 Oct; 28(42):3689-701. PubMed ID: 19668225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of the full length and mutated heat shock factor 1 in human cells.
    Herbomel G; Kloster-Landsberg M; Folco EG; Col E; Usson Y; Vourc'h C; Delon A; Souchier C
    PLoS One; 2013; 8(7):e67566. PubMed ID: 23861773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis.
    Li D; Marchenko ND; Moll UM
    Cell Death Differ; 2011 Dec; 18(12):1904-13. PubMed ID: 21637290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant p53 - Heat Shock Response Oncogenic Cooperation: A New Mechanism of Cancer Cell Survival.
    Alexandrova EM; Marchenko ND
    Front Endocrinol (Lausanne); 2015; 6():53. PubMed ID: 25954247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis.
    Dai C; Whitesell L; Rogers AB; Lindquist S
    Cell; 2007 Sep; 130(6):1005-18. PubMed ID: 17889646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.
    Meijering RA; Wiersma M; van Marion DM; Zhang D; Hoogstra-Berends F; Dijkhuis AJ; Schmidt M; Wieland T; Kampinga HH; Henning RH; Brundel BJ
    PLoS One; 2015; 10(7):e0133553. PubMed ID: 26193369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.