These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24763317)

  • 1. Fast protein loop sampling and structure prediction using distance-guided sequential chain-growth Monte Carlo method.
    Tang K; Zhang J; Liang J
    PLoS Comput Biol; 2014 Apr; 10(4):e1003539. PubMed ID: 24763317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational sampling and structure prediction of multiple interacting loops in soluble and β-barrel membrane proteins using multi-loop distance-guided chain-growth Monte Carlo method.
    Tang K; Wong SW; Liu JS; Zhang J; Liang J
    Bioinformatics; 2015 Aug; 31(16):2646-52. PubMed ID: 25861965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance-Guided Forward and Backward Chain-Growth Monte Carlo Method for Conformational Sampling and Structural Prediction of Antibody CDR-H3 Loops.
    Tang K; Zhang J; Liang J
    J Chem Theory Comput; 2017 Jan; 13(1):380-388. PubMed ID: 27996262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast de novo discovery of low-energy protein loop conformations.
    Wong SWK; Liu JS; Kou SC
    Proteins; 2017 Aug; 85(8):1402-1412. PubMed ID: 28378911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LEAP: highly accurate prediction of protein loop conformations by integrating coarse-grained sampling and optimized energy scores with all-atom refinement of backbone and side chains.
    Liang S; Zhang C; Zhou Y
    J Comput Chem; 2014 Feb; 35(4):335-41. PubMed ID: 24327406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unbiased, scalable sampling of protein loop conformations from probabilistic priors.
    Zhang Y; Hauser K
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S9. PubMed ID: 24565175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz.
    Das R
    PLoS One; 2013; 8(10):e74830. PubMed ID: 24204571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing effective energy functions for protein structure prediction through broadening attraction-basin and reverse Monte Carlo sampling.
    Wang C; Wei Y; Zhang H; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):135. PubMed ID: 30925867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding.
    Zhang Y; Kihara D; Skolnick J
    Proteins; 2002 Aug; 48(2):192-201. PubMed ID: 12112688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions.
    Olson MA; Feig M; Brooks CL
    J Comput Chem; 2008 Apr; 29(5):820-31. PubMed ID: 17876760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibodies as a model system for comparative model refinement.
    Sellers BD; Nilmeier JP; Jacobson MP
    Proteins; 2010 Aug; 78(11):2490-505. PubMed ID: 20602354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchical approach to all-atom protein loop prediction.
    Jacobson MP; Pincus DL; Rapp CS; Day TJ; Honig B; Shaw DE; Friesner RA
    Proteins; 2004 May; 55(2):351-67. PubMed ID: 15048827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of protein loop structures using a local move Monte Carlo approach and a grid-based force field.
    Cui M; Mezei M; Osman R
    Protein Eng Des Sel; 2008 Dec; 21(12):729-35. PubMed ID: 18957407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins.
    Rabow AA; Scheraga HA
    J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification.
    Wojcik J; Mornon JP; Chomilier J
    J Mol Biol; 1999 Jun; 289(5):1469-90. PubMed ID: 10373380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of a 12-residue loop in bovine pancreatic trypsin inhibitor: effects of buried water.
    Carlacci L
    Biopolymers; 2001 Apr; 58(4):359-73. PubMed ID: 11180050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab Initio Prediction of 3-D Conformations for Protein Long Loops with High Accuracy and Applications to Antibody CDRH3 Modeling.
    Liang S; Zhang C; Zhu M
    J Chem Inf Model; 2023 Dec; 63(23):7568-7577. PubMed ID: 38018130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.
    St-Pierre JF; Mousseau N
    Proteins; 2012 Jul; 80(7):1883-94. PubMed ID: 22488731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.