These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24763366)

  • 1. Impact of forest harvesting on trophic structure of eastern Canadian Boreal Shield lakes: insights from stable isotope analyses.
    Glaz P; Sirois P; Archambault P; Nozais C
    PLoS One; 2014; 9(4):e96143. PubMed ID: 24763366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Non-native Fish on Lacustrine Food Web Structure and Mercury Biomagnification along a Dissolved Organic Carbon Gradient.
    Barst BD; Hudelson K; Lescord GL; Santa-Rios A; Basu N; Crémazy A; Drevnick PE
    Environ Toxicol Chem; 2020 Nov; 39(11):2196-2207. PubMed ID: 32729960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use.
    Caldwell TJ; Chandra S; Feher K; Simmons JB; Hogan Z
    Glob Chang Biol; 2020 Oct; 26(10):5475-5491. PubMed ID: 32602183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pelagic food webs of humic lakes show low short-term response to forest harvesting.
    Deininger A; Jonsson A; Karlsson J; Bergström AK
    Ecol Appl; 2019 Jan; 29(1):e01813. PubMed ID: 30312509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes.
    Scharnweber K; Syväranta J; Hilt S; Brauns M; Vanni MJ; Brothers S; Köhler J; Knezević-Jarić J; Mehner T
    Ecology; 2014 Jun; 95(6):1496-505. PubMed ID: 25039215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics.
    Kidd KA; Muir DC; Evans MS; Wang X; Whittle M; Swanson HK; Johnston T; Guildford S
    Sci Total Environ; 2012 Nov; 438():135-43. PubMed ID: 22982939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish.
    Hayden B; Harrod C; Kahilainen KK
    J Anim Ecol; 2014 Nov; 83(6):1501-12. PubMed ID: 24738779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Habitat structure determines resource use by zooplankton in temperate lakes.
    Francis TB; Schindler DE; Holtgrieve GW; Larson ER; Scheuerell MD; Semmens BX; Ward EJ
    Ecol Lett; 2011 Apr; 14(4):364-72. PubMed ID: 21314881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mussels can both outweigh and interact with the effects of terrestrial to freshwater resource subsidies on littoral benthic communities.
    Smith BR; Aldridge DC; Tanentzap AJ
    Sci Total Environ; 2018 May; 622-623():49-56. PubMed ID: 29202368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments.
    Meunier CL; Gundale MJ; Sánchez IS; Liess A
    Glob Chang Biol; 2016 Jan; 22(1):164-79. PubMed ID: 25953197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury concentrations in fish from forest harvesting and fire-impacted Canadian Boreal lakes compared using stable isotopes of nitrogen.
    Garcia E; Carignan R
    Environ Toxicol Chem; 2005 Mar; 24(3):685-93. PubMed ID: 15779770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations.
    Wu P; Kainz M; Åkerblom S; Bravo AG; Sonesten L; Branfireun B; Deininger A; Bergström AK; Bishop K
    Sci Total Environ; 2019 Jun; 669():821-832. PubMed ID: 30897439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen.
    Cole JJ; Carpenter SR; Kitchell J; Pace ML; Solomon CT; Weidel B
    Proc Natl Acad Sci U S A; 2011 Feb; 108(5):1975-80. PubMed ID: 21245299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food web differences between two neighboring tropical high mountain lakes and the influence of introducing a new top predator.
    Jiménez-Seinos JL; Alcocer J; Planas D
    PLoS One; 2023; 18(6):e0287066. PubMed ID: 37310987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduced trout sever trophic connections in watersheds: consequences for a declining amphibian.
    Finlay JC; Vredenburg VT
    Ecology; 2007 Sep; 88(9):2187-98. PubMed ID: 17918397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal and ontogenetic shifts in the diet of Arctic charr Salvelinus alpinus in a subarctic lake.
    Eloranta AP; Kahilainen KK; Jones RI
    J Fish Biol; 2010 Jul; 77(1):80-97. PubMed ID: 20646140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen effects on the pelagic food web are modified by dissolved organic carbon.
    Deininger A; Faithfull CL; Bergström AK
    Oecologia; 2017 Aug; 184(4):901-916. PubMed ID: 28756491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resource Partitioning in Food, Space and Time between Arctic Charr (Salvelinus alpinus), Brown Trout (Salmo trutta) and European Whitefish (Coregonus lavaretus) at the Southern Edge of Their Continuous Coexistence.
    Jensen H; Kiljunen M; Knudsen R; Amundsen PA
    PLoS One; 2017; 12(1):e0170582. PubMed ID: 28122061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does ecological release from distantly related species affect phenotypic divergence in brook charr?
    Rainville V; Filion A; Lussier I; Pépino M; Magnan P
    Oecologia; 2021 Jan; 195(1):77-92. PubMed ID: 33521849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes.
    Eloranta AP; Kahilainen KK; Amundsen PA; Knudsen R; Harrod C; Jones RI
    Ecol Evol; 2015 Apr; 5(8):1664-75. PubMed ID: 25937909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.