BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 24763591)

  • 1. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel.
    Berndt A; Lee SY; Ramakrishnan C; Deisseroth K
    Science; 2014 Apr; 344(6182):420-4. PubMed ID: 24763591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of channelrhodopsin into a light-gated chloride channel.
    Wietek J; Wiegert JS; Adeishvili N; Schneider F; Watanabe H; Tsunoda SP; Vogt A; Elstner M; Oertner TG; Hegemann P
    Science; 2014 Apr; 344(6182):409-12. PubMed ID: 24674867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.
    Berndt A; Lee SY; Wietek J; Ramakrishnan C; Steinberg EE; Rashid AJ; Kim H; Park S; Santoro A; Frankland PW; Iyer SM; Pak S; Ährlund-Richter S; Delp SL; Malenka RC; Josselyn SA; Carlén M; Hegemann P; Deisseroth K
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):822-9. PubMed ID: 26699459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a Natural Green Light Absorbing Chloride Conducting Channelrhodopsin from Proteomonas sulcata.
    Wietek J; Broser M; Krause BS; Hegemann P
    J Biol Chem; 2016 Feb; 291(8):4121-7. PubMed ID: 26740624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin.
    Wen L; Wang H; Tanimoto S; Egawa R; Matsuzaka Y; Mushiake H; Ishizuka T; Yawo H
    PLoS One; 2010 Sep; 5(9):e12893. PubMed ID: 20886118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior.
    Wietek J; Rodriguez-Rozada S; Tutas J; Tenedini F; Grimm C; Oertner TG; Soba P; Hegemann P; Wiegert JS
    Sci Rep; 2017 Nov; 7(1):14957. PubMed ID: 29097684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysics. Silencing neurons with light.
    Hayashi S
    Science; 2014 Apr; 344(6182):369-70. PubMed ID: 24763579
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure-Function Relationship of Channelrhodopsins.
    Kato HE
    Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the Time Domain of Neuronal Silencing with Cryptophyte Anion Channelrhodopsins.
    Govorunova EG; Sineshchekov OA; Hemmati R; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    eNeuro; 2018; 5(3):. PubMed ID: 30027111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Expanding Family of Natural Anion Channelrhodopsins Reveals Large Variations in Kinetics, Conductance, and Spectral Sensitivity.
    Govorunova EG; Sineshchekov OA; Rodarte EM; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    Sci Rep; 2017 Mar; 7():43358. PubMed ID: 28256618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of engineered channelrhodopsin variants with improved properties and kinetics.
    Lin JY; Lin MZ; Steinbach P; Tsien RY
    Biophys J; 2009 Mar; 96(5):1803-14. PubMed ID: 19254539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo.
    Wietek J; Beltramo R; Scanziani M; Hegemann P; Oertner TG; Wiegert JS
    Sci Rep; 2015 Oct; 5():14807. PubMed ID: 26443033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.
    Berglund K; Birkner E; Augustine GJ; Hochgeschwender U
    PLoS One; 2013; 8(3):e59759. PubMed ID: 23544095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.
    Govorunova EG; Sineshchekov OA; Janz R; Liu X; Spudich JL
    Science; 2015 Aug; 349(6248):647-50. PubMed ID: 26113638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
    Govorunova EG; Sineshchekov OA; Li H; Janz R; Spudich JL
    J Biol Chem; 2013 Oct; 288(41):29911-22. PubMed ID: 23995841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pumping mechanism of NM-R3, a light-driven bacterial chloride importer in the rhodopsin family.
    Yun JH; Ohki M; Park JH; Ishimoto N; Sato-Tomita A; Lee W; Jin Z; Tame JRH; Shibayama N; Park SY; Lee W
    Sci Adv; 2020 Feb; 6(6):eaay2042. PubMed ID: 32083178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins.
    Mahn M; Gibor L; Patil P; Cohen-Kashi Malina K; Oring S; Printz Y; Levy R; Lampl I; Yizhar O
    Nat Commun; 2018 Oct; 9(1):4125. PubMed ID: 30297821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications for the impairment of the rapid channel closing of Proteomonas sulcata anion channelrhodopsin 1 at high Cl
    Tsukamoto T; Kikuchi C; Suzuki H; Aizawa T; Kikukawa T; Demura M
    Sci Rep; 2018 Sep; 8(1):13445. PubMed ID: 30194401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
    Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y
    J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation and inhibition of TMEM16A calcium-activated chloride channels.
    Ni YL; Kuan AS; Chen TY
    PLoS One; 2014; 9(1):e86734. PubMed ID: 24489780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.