These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24763652)

  • 1. Combining Monte Carlo methods with coherent wave optics for the simulation of phase-sensitive X-ray imaging.
    Peter S; Modregger P; Fix MK; Volken W; Frei D; Manser P; Stampanoni M
    J Synchrotron Radiat; 2014 May; 21(Pt 3):613-22. PubMed ID: 24763652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray phase contrast simulation for grating-based interferometry using GATE.
    Sanctorum J; De Beenhouwer J; Sijbers J
    Opt Express; 2020 Oct; 28(22):33390-33412. PubMed ID: 33115004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Monte Carlo simulation of X-ray phase contrast using GATE.
    Langer M; Cen Z; Rit S; Létang JM
    Opt Express; 2020 May; 28(10):14522-14535. PubMed ID: 32403491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclusion of coherence in Monte Carlo models for simulation of x-ray phase contrast imaging.
    Cipiccia S; Vittoria FA; Weikum M; Olivo A; Jaroszynski DA
    Opt Express; 2014 Sep; 22(19):23480-8. PubMed ID: 25321817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of simulators for x-ray speckle-based phase contrast imaging.
    Quénot L; Brun E; Létang JM; Langer M
    Phys Med Biol; 2021 Sep; 66(17):. PubMed ID: 34412046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spherical grating based x-ray Talbot interferometry.
    Cong W; Xi Y; Wang G
    Med Phys; 2015 Nov; 42(11):6514-9. PubMed ID: 26520741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-classical Monte Carlo algorithm for the simulation of X-ray grating interferometry.
    Tessarini S; Fix MK; Manser P; Volken W; Frei D; Mercolli L; Stampanoni M
    Sci Rep; 2022 Feb; 12(1):2485. PubMed ID: 35169138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave optics simulation of grating-based X-ray phase-contrast imaging using 4D Mouse Whole Body (MOBY) phantom.
    Sung Y; Nelson B; Shanblatt ER; Gupta R; McCollough CH; Graves WS
    Med Phys; 2020 Nov; 47(11):5761-5771. PubMed ID: 32969031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abstract ID: 197 Monte Carlo simulations of X-ray grating interferometry based imaging systems.
    Tessarini S; Fix MK; Volken W; Frei D; Stampanoni MFM
    Phys Med; 2018 Jan; 45 Suppl 1():S3. PubMed ID: 29413853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging.
    Ritter A; Bartl P; Bayer F; Gödel KC; Haas W; Michel T; Pelzer G; Rieger J; Weber T; Zang A; Anton G
    Opt Express; 2014 Sep; 22(19):23276-89. PubMed ID: 25321796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.
    Canestrari N; Chubar O; Reininger R
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):1110-21. PubMed ID: 25178000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High energy x-ray phase contrast CT using glancing-angle grating interferometers.
    Sarapata A; Stayman JW; Finkenthal M; Siewerdsen JH; Pfeiffer F; Stutman D
    Med Phys; 2014 Feb; 41(2):021904. PubMed ID: 24506625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual grating approach for Monte Carlo simulations of edge illumination-based x-ray phase contrast imaging.
    Sanctorum J; Sijbers J; De Beenhouwer J
    Opt Express; 2022 Oct; 30(21):38695-38708. PubMed ID: 36258428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging.
    Sarapata A; Chabior M; Cozzini C; Sperl JI; Bequé D; Langner O; Coman J; Zanette I; Ruiz-Yaniz M; Pfeiffer F
    Rev Sci Instrum; 2014 Oct; 85(10):103708. PubMed ID: 25362404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Silico Phase-Contrast X-Ray Imaging of Anthropomorphic Voxel-Based Phantoms.
    Haggmark I; Shaker K; Hertz HM
    IEEE Trans Med Imaging; 2021 Feb; 40(2):539-548. PubMed ID: 33055024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.
    Yang Y; Tang X
    Med Phys; 2014 Oct; 41(10):101914. PubMed ID: 25281966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of speckle-based X-ray dark-field imaging using numerical wave-optics simulations.
    Meyer S; Shi SZ; Shapira N; Maidment ADA; Noël PB
    Sci Rep; 2021 Aug; 11(1):16113. PubMed ID: 34373478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.