These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 24763817)
21. A modular cloning toolbox for the generation of chloroplast transformation vectors. Vafaee Y; Staniek A; Mancheno-Solano M; Warzecha H PLoS One; 2014; 9(10):e110222. PubMed ID: 25302695 [TBL] [Abstract][Full Text] [Related]
22. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259 [TBL] [Abstract][Full Text] [Related]
23. Isolation of High-Quality Plastids from the Diatom Phaeodactylum tricornutum. Hu F; Yin W; Huang T; Hu H Methods Mol Biol; 2024; 2776():177-183. PubMed ID: 38502504 [TBL] [Abstract][Full Text] [Related]
24. A guide to choosing vectors for transformation of the plastid genome of higher plants. Lutz KA; Azhagiri AK; Tungsuchat-Huang T; Maliga P Plant Physiol; 2007 Dec; 145(4):1201-10. PubMed ID: 17965179 [TBL] [Abstract][Full Text] [Related]
25. Reduction in carotenoid levels in the marine diatom Phaeodactylum tricornutum by artificial microRNAs targeted against the endogenous phytoene synthase gene. Kaur S; Spillane C Mar Biotechnol (NY); 2015 Feb; 17(1):1-7. PubMed ID: 25189134 [TBL] [Abstract][Full Text] [Related]
26. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Lee SM; Kang K; Chung H; Yoo SH; Xu XM; Lee SB; Cheong JJ; Daniell H; Kim M Mol Cells; 2006 Jun; 21(3):401-10. PubMed ID: 16819304 [TBL] [Abstract][Full Text] [Related]
27. Generation of Mutants of Nuclear-Encoded Plastid Proteins Using CRISPR/Cas9 in the Diatom Phaeodactylum tricornutum. Allorent G; Guglielmino E; Giustini C; Courtois F Methods Mol Biol; 2018; 1829():367-378. PubMed ID: 29987734 [TBL] [Abstract][Full Text] [Related]
28. A simple technology for plastid transformation with fragmented DNA. Ren K; Xu W; Ren B; Fu J; Jiang C; Zhang J J Exp Bot; 2022 Oct; 73(18):6078-6088. PubMed ID: 35689813 [TBL] [Abstract][Full Text] [Related]
29. Localization of soluble beta-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Sorting to the chloroplast and cluster formation on the girdle lamellae. Tanaka Y; Nakatsuma D; Harada H; Ishida M; Matsuda Y Plant Physiol; 2005 May; 138(1):207-17. PubMed ID: 15849303 [TBL] [Abstract][Full Text] [Related]
30. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Khan MS; Maliga P Nat Biotechnol; 1999 Sep; 17(9):910-5. PubMed ID: 10471936 [TBL] [Abstract][Full Text] [Related]
31. Characterization of marine diatom-infecting virus promoters in the model diatom Phaeodactylum tricornutum. Kadono T; Miyagawa-Yamaguchi A; Kira N; Tomaru Y; Okami T; Yoshimatsu T; Hou L; Ohama T; Fukunaga K; Okauchi M; Yamaguchi H; Ohnishi K; Falciatore A; Adachi M Sci Rep; 2015 Dec; 5():18708. PubMed ID: 26692124 [TBL] [Abstract][Full Text] [Related]
32. Optimized mRuby3 is a Suitable Fluorescent Protein for in vivo Co-localization Studies with GFP in the Diatom Phaeodactylum tricornutum. Marter P; Schmidt S; Kiontke S; Moog D Protist; 2020 Feb; 171(1):125715. PubMed ID: 32062589 [TBL] [Abstract][Full Text] [Related]
33. High-throughput pyrosequencing of the chloroplast genome of a highly neutral-lipid-producing marine pennate diatom, Fistulifera sp. strain JPCC DA0580. Tanaka T; Fukuda Y; Yoshino T; Maeda Y; Muto M; Matsumoto M; Mayama S; Matsunaga T Photosynth Res; 2011 Sep; 109(1-3):223-9. PubMed ID: 21290260 [TBL] [Abstract][Full Text] [Related]
34. Genetic transformation: a tool to study protein targeting in diatoms. Kroth PG Methods Mol Biol; 2007; 390():257-67. PubMed ID: 17951693 [TBL] [Abstract][Full Text] [Related]
35. No two clones are alike: characterization of heterologous subpopulations in a transgenic cell line of the model diatom Phaeodactylum tricornutum. Diaz-Garza AM; Merindol N; Dos Santos KCG; Lavoie-Marchand F; Ingalls B; Desgagné-Penix I Microb Cell Fact; 2024 Oct; 23(1):286. PubMed ID: 39428506 [TBL] [Abstract][Full Text] [Related]
36. Genetic transformation of the sugar beet plastome. De Marchis F; Wang Y; Stevanato P; Arcioni S; Bellucci M Transgenic Res; 2009 Feb; 18(1):17-30. PubMed ID: 18551377 [TBL] [Abstract][Full Text] [Related]
37. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Cui C; Song F; Tan Y; Zhou X; Zhao W; Ma F; Liu Y; Hussain J; Wang Y; Yang G; He G Acta Biochim Biophys Sin (Shanghai); 2011 Apr; 43(4):284-91. PubMed ID: 21343162 [TBL] [Abstract][Full Text] [Related]
38. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum. Kitao Y; Harada H; Matsuda Y Physiol Plant; 2008 May; 133(1):68-77. PubMed ID: 18298418 [TBL] [Abstract][Full Text] [Related]
39. Presequence acquisition during secondary endocytobiosis and the possible role of introns. Kilian O; Kroth PG J Mol Evol; 2004 Jun; 58(6):712-21. PubMed ID: 15461428 [TBL] [Abstract][Full Text] [Related]
40. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Watanabe Y; Kadono T; Kira N; Suzuki K; Iwata O; Ohnishi K; Yamaguchi H; Adachi M Mar Genomics; 2018 Dec; 42():41-48. PubMed ID: 30509379 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]