These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 24764079)
1. Co-activation of microRNAs by Zelda is essential for early Drosophila development. Fu S; Nien CY; Liang HL; Rushlow C Development; 2014 May; 141(10):2108-18. PubMed ID: 24764079 [TBL] [Abstract][Full Text] [Related]
2. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Liang HL; Nien CY; Liu HY; Metzstein MM; Kirov N; Rushlow C Nature; 2008 Nov; 456(7220):400-3. PubMed ID: 18931655 [TBL] [Abstract][Full Text] [Related]
3. Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. Harrison MM; Li XY; Kaplan T; Botchan MR; Eisen MB PLoS Genet; 2011 Oct; 7(10):e1002266. PubMed ID: 22028662 [TBL] [Abstract][Full Text] [Related]
4. Zelda and the maternal-to-zygotic transition in cockroaches. Ventos-Alfonso A; Ylla G; Belles X FEBS J; 2019 Aug; 286(16):3206-3221. PubMed ID: 30993896 [TBL] [Abstract][Full Text] [Related]
5. STAT is an essential activator of the zygotic genome in the early Drosophila embryo. Tsurumi A; Xia F; Li J; Larson K; LaFrance R; Li WX PLoS Genet; 2011 May; 7(5):e1002086. PubMed ID: 21637778 [TBL] [Abstract][Full Text] [Related]
6. Temporal coordination of gene networks by Zelda in the early Drosophila embryo. Nien CY; Liang HL; Butcher S; Sun Y; Fu S; Gocha T; Kirov N; Manak JR; Rushlow C PLoS Genet; 2011 Oct; 7(10):e1002339. PubMed ID: 22028675 [TBL] [Abstract][Full Text] [Related]
7. GAF is essential for zygotic genome activation and chromatin accessibility in the early Gaskill MM; Gibson TJ; Larson ED; Harrison MM Elife; 2021 Mar; 10():. PubMed ID: 33720012 [TBL] [Abstract][Full Text] [Related]
8. Premature translation of the Drosophila zygotic genome activator Zelda is not sufficient to precociously activate gene expression. Larson ED; Komori H; Fitzpatrick ZA; Krabbenhoft SD; Lee CY; Harrison M G3 (Bethesda); 2022 Aug; 12(9):. PubMed ID: 35876878 [TBL] [Abstract][Full Text] [Related]
9. Drosophila melanogaster Zelda and Single-minded collaborate to regulate an evolutionarily dynamic CNS midline cell enhancer. Pearson JC; Watson JD; Crews ST Dev Biol; 2012 Jun; 366(2):420-32. PubMed ID: 22537497 [TBL] [Abstract][Full Text] [Related]
10. Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation. McDaniel SL; Gibson TJ; Schulz KN; Fernandez Garcia M; Nevil M; Jain SU; Lewis PW; Zaret KS; Harrison MM Mol Cell; 2019 Apr; 74(1):185-195.e4. PubMed ID: 30797686 [TBL] [Abstract][Full Text] [Related]
11. The conserved regulatory basis of mRNA contributions to the early Drosophila embryo differs between the maternal and zygotic genomes. Omura CS; Lott SE PLoS Genet; 2020 Mar; 16(3):e1008645. PubMed ID: 32226006 [TBL] [Abstract][Full Text] [Related]
12. A conserved maternal-specific repressive domain in Zelda revealed by Cas9-mediated mutagenesis in Drosophila melanogaster. Hamm DC; Larson ED; Nevil M; Marshall KE; Bondra ER; Harrison MM PLoS Genet; 2017 Dec; 13(12):e1007120. PubMed ID: 29261646 [TBL] [Abstract][Full Text] [Related]
13. Temporal dynamics, spatial range, and transcriptional interpretation of the Dorsal morphogen gradient. Rushlow CA; Shvartsman SY Curr Opin Genet Dev; 2012 Dec; 22(6):542-6. PubMed ID: 22981910 [TBL] [Abstract][Full Text] [Related]
14. Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Hamm DC; Harrison MM Open Biol; 2018 Dec; 8(12):180183. PubMed ID: 30977698 [TBL] [Abstract][Full Text] [Related]
15. miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio. Soni K; Choudhary A; Patowary A; Singh AR; Bhatia S; Sivasubbu S; Chandrasekaran S; Pillai B Nucleic Acids Res; 2013 Apr; 41(8):4470-80. PubMed ID: 23470996 [TBL] [Abstract][Full Text] [Related]
16. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Schulz KN; Bondra ER; Moshe A; Villalta JE; Lieb JD; Kaplan T; McKay DJ; Harrison MM Genome Res; 2015 Nov; 25(11):1715-26. PubMed ID: 26335634 [TBL] [Abstract][Full Text] [Related]
17. Spatial regulation of microRNA gene expression in the Drosophila embryo. Biemar F; Zinzen R; Ronshaugen M; Sementchenko V; Manak JR; Levine MS Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15907-11. PubMed ID: 16249329 [TBL] [Abstract][Full Text] [Related]
18. 6mA-DNA-binding factor Jumu controls maternal-to-zygotic transition upstream of Zelda. He S; Zhang G; Wang J; Gao Y; Sun R; Cao Z; Chen Z; Zheng X; Yuan J; Luo Y; Wang X; Zhang W; Zhang P; Zhao Y; He C; Tao Y; Sun Q; Chen D Nat Commun; 2019 May; 10(1):2219. PubMed ID: 31101825 [TBL] [Abstract][Full Text] [Related]
20. The embryonic transcription factor Zelda of Drosophila melanogaster is also expressed in larvae and may regulate developmentally important genes. Giannios P; Tsitilou SG Biochem Biophys Res Commun; 2013 Aug; 438(2):329-33. PubMed ID: 23891688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]