These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24764165)

  • 1. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy.
    Gracin D; Štrukil V; Friščić T; Halasz I; Užarević K
    Angew Chem Int Ed Engl; 2014 Jun; 53(24):6193-7. PubMed ID: 24764165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time
    Lukin S; Germann LS; Friščić T; Halasz I
    Acc Chem Res; 2022 May; 55(9):1262-1277. PubMed ID: 35446551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem In Situ Monitoring for Quantitative Assessment of Mechanochemical Reactions Involving Structurally Unknown Phases.
    Lukin S; Stolar T; Tireli M; Blanco MV; Babić D; Friščić T; Užarević K; Halasz I
    Chemistry; 2017 Oct; 23(56):13941-13949. PubMed ID: 28639258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists.
    Užarević K; Halasz I; Friščić T
    J Phys Chem Lett; 2015 Oct; 6(20):4129-40. PubMed ID: 26722788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time in situ powder X-ray diffraction monitoring of mechanochemical synthesis of pharmaceutical cocrystals.
    Halasz I; Puškarić A; Kimber SA; Beldon PJ; Belenguer AM; Adams F; Honkimäki V; Dinnebier RE; Patel B; Jones W; Strukil V; Friščić T
    Angew Chem Int Ed Engl; 2013 Oct; 52(44):11538-41. PubMed ID: 24108571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy.
    Julien PA; Malvestiti I; Friščić T
    Beilstein J Org Chem; 2017; 13():2160-2168. PubMed ID: 29114323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illuminating milling mechanochemistry by tandem real-time fluorescence emission and Raman spectroscopy monitoring.
    Julien PA; Arhangelskis M; Germann LS; Etter M; Dinnebier RE; Morris AJ; Friščić T
    Chem Sci; 2023 Nov; 14(43):12121-12132. PubMed ID: 37969588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct in situ investigation of milling reactions using combined X-ray diffraction and Raman spectroscopy.
    Batzdorf L; Fischer F; Wilke M; Wenzel KJ; Emmerling F
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1799-802. PubMed ID: 25529541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenging the Ostwald rule of stages in mechanochemical cocrystallisation.
    Germann LS; Arhangelskis M; Etter M; Dinnebier RE; Friščić T
    Chem Sci; 2020 Aug; 11(37):10092-10100. PubMed ID: 34094270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time and in situ monitoring of mechanochemical milling reactions.
    Friščić T; Halasz I; Beldon PJ; Belenguer AM; Adams F; Kimber SA; Honkimäki V; Dinnebier RE
    Nat Chem; 2013 Jan; 5(1):66-73. PubMed ID: 23247180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding.
    Tireli M; Juribašić Kulcsár M; Cindro N; Gracin D; Biliškov N; Borovina M; Ćurić M; Halasz I; Užarević K
    Chem Commun (Camb); 2015 May; 51(38):8058-61. PubMed ID: 25866133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cocrystal Formation through Mechanochemistry: from Neat and Liquid-Assisted Grinding to Polymer-Assisted Grinding.
    Hasa D; Rauber GS; Voinovich D; Jones W
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7371-5. PubMed ID: 25939405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions.
    Lukin S; Užarević K; Halasz I
    Nat Protoc; 2021 Jul; 16(7):3492-3521. PubMed ID: 34089023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Visualization of a Mechanochemically Induced Molecular Rearrangement.
    Ardila-Fierro KJ; Lukin S; Etter M; Užarević K; Halasz I; Bolm C; Hernández JG
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13458-13462. PubMed ID: 32187814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Monitoring of the Mechanosynthesis of the Archetypal Metal-Organic Framework HKUST-1: Effect of Liquid Additives on the Milling Reactivity.
    Stolar T; Batzdorf L; Lukin S; Žilić D; Motillo C; Friščić T; Emmerling F; Halasz I; Užarević K
    Inorg Chem; 2017 Jun; 56(11):6599-6608. PubMed ID: 28537382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic frameworks.
    Friščić T
    Chem Soc Rev; 2012 May; 41(9):3493-510. PubMed ID: 22371100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enthalpy
    Užarević K; Ferdelji N; Mrla T; Julien PA; Halasz B; Friščić T; Halasz I
    Chem Sci; 2018 Mar; 9(9):2525-2532. PubMed ID: 29732130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Click mechanochemistry: quantitative synthesis of "ready to use" chiral organocatalysts by efficient two-fold thiourea coupling to vicinal diamines.
    Štrukil V; Igrc MD; Eckert-Maksić M; Friščić T
    Chemistry; 2012 Jul; 18(27):8464-73. PubMed ID: 22648998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Investigations of Mechanochemical One-Pot Syntheses.
    Kulla H; Haferkamp S; Akhmetova I; Röllig M; Maierhofer C; Rademann K; Emmerling F
    Angew Chem Int Ed Engl; 2018 May; 57(20):5930-5933. PubMed ID: 29605971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanochemical Metathesis between AgNO
    Lukin S; Stolar T; Lončarić I; Milanović I; Biliškov N; di Michiel M; Friščić T; Halasz I
    Inorg Chem; 2020 Sep; 59(17):12200-12208. PubMed ID: 32806016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.