These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24764256)

  • 1. Silencing of the glycerophosphocholine phosphodiesterase GDPD5 alters the phospholipid metabolite profile in a breast cancer model in vivo as monitored by (31) P MRS.
    Wijnen JP; Jiang L; Greenwood TR; Cheng M; Döpkens M; Cao MD; Bhujwalla ZM; Krishnamachary B; Klomp DW; Glunde K
    NMR Biomed; 2014 Jun; 27(6):692-9. PubMed ID: 24764256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer.
    Cao MD; Döpkens M; Krishnamachary B; Vesuna F; Gadiya MM; Lønning PE; Bhujwalla ZM; Gribbestad IS; Glunde K
    NMR Biomed; 2012 Sep; 25(9):1033-42. PubMed ID: 22279038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1H/31P polarization transfer at 9.4 Tesla for improved specificity of detecting phosphomonoesters and phosphodiesters in breast tumor models.
    Wijnen JP; Jiang L; Greenwood TR; van der Kemp WJ; Klomp DW; Glunde K
    PLoS One; 2014; 9(7):e102256. PubMed ID: 25036036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting choline phospholipid metabolism: GDPD5 and GDPD6 silencing decrease breast cancer cell proliferation, migration, and invasion.
    Cao MD; Cheng M; Rizwan A; Jiang L; Krishnamachary B; Bhujwalla ZM; Bathen TF; Glunde K
    NMR Biomed; 2016 Aug; 29(8):1098-107. PubMed ID: 27356959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Effects of Doxorubicin on Choline Metabolism in Breast Cancer.
    Cheng M; Rizwan A; Jiang L; Bhujwalla ZM; Glunde K
    Neoplasia; 2017 Aug; 19(8):617-627. PubMed ID: 28654865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay of choline metabolites and genes in patient-derived breast cancer xenografts.
    Grinde MT; Skrbo N; Moestue SA; Rødland EA; Borgan E; Kristian A; Sitter B; Bathen TF; Børresen-Dale AL; Mælandsmo GM; Engebraaten O; Sørlie T; Marangoni E; Gribbestad IS
    Breast Cancer Res; 2014 Jan; 16(1):R5. PubMed ID: 24447408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo ³¹P magnetic resonance spectroscopic imaging (MRSI) for metabolic profiling of human breast cancer xenografts.
    Esmaeili M; Moestue SA; Hamans BC; Veltien A; Kristian A; Engebråten O; Maelandsmo GM; Gribbestad IS; Bathen TF; Heerschap A
    J Magn Reson Imaging; 2015 Mar; 41(3):601-9. PubMed ID: 24532410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid metabolism in cancer cells monitored by 31P NMR spectroscopy.
    Daly PF; Lyon RC; Faustino PJ; Cohen JS
    J Biol Chem; 1987 Nov; 262(31):14875-8. PubMed ID: 3667610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered phospholipid metabolism in schizophrenia: a phosphorus 31 nuclear magnetic resonance spectroscopy study.
    Weber-Fahr W; Englisch S; Esser A; Tunc-Skarka N; Meyer-Lindenberg A; Ende G; Zink M
    Psychiatry Res; 2013 Dec; 214(3):365-73. PubMed ID: 24045051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GDPD5 is a glycerophosphocholine phosphodiesterase that osmotically regulates the osmoprotective organic osmolyte GPC.
    Gallazzini M; Ferraris JD; Burg MB
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):11026-31. PubMed ID: 18667693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High NaCl- and urea-induced posttranslational modifications that increase glycerophosphocholine by inhibiting GDPD5 phosphodiesterase.
    Topanurak S; Ferraris JD; Li J; Izumi Y; Williams CK; Gucek M; Wang G; Zhou X; Burg MB
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7482-7. PubMed ID: 23589856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of breast cancers and therapy response by MRS and quantitative gene expression profiling in the choline pathway.
    Morse DL; Carroll D; Day S; Gray H; Sadarangani P; Murthi S; Job C; Baggett B; Raghunand N; Gillies RJ
    NMR Biomed; 2009 Jan; 22(1):114-27. PubMed ID: 19016452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of choline metabolites to docetaxel therapy is quantified in vivo by localized (31)P MRS of human breast cancer xenografts and in vitro by high-resolution (31)P NMR spectroscopy of cell extracts.
    Morse DL; Raghunand N; Sadarangani P; Murthi S; Job C; Day S; Howison C; Gillies RJ
    Magn Reson Med; 2007 Aug; 58(2):270-80. PubMed ID: 17654590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer.
    Glunde K; Jie C; Bhujwalla ZM
    Cancer Res; 2004 Jun; 64(12):4270-6. PubMed ID: 15205341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus metabolism during growth of lymphoma in mouse liver: a comparison of 31P magnetic resonance spectroscopy in vivo and in vitro.
    Thomas CP; Dixon RM; Tian M; Butler SA; Counsell CJ; Bradley JK; Adams GE; Radda GK
    Br J Cancer; 1994 Apr; 69(4):633-40. PubMed ID: 8142251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative (31)P HR-MAS MR spectroscopy for detection of response to PI3K/mTOR inhibition in breast cancer xenografts.
    Esmaeili M; Bathen TF; Engebråten O; Mælandsmo GM; Gribbestad IS; Moestue SA
    Magn Reson Med; 2014 Jun; 71(6):1973-81. PubMed ID: 23878023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells.
    Glunde K; Jie C; Bhujwalla ZM
    Neoplasia; 2006 Sep; 8(9):758-71. PubMed ID: 16984733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo Metabolic Profiles as Determined by
    Wenger KJ; Hattingen E; Franz K; Steinbach J; Bähr O; Pilatus U
    Clin Neuroradiol; 2019 Mar; 29(1):27-36. PubMed ID: 28983683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid and energy metabolism of cancer cells monitored by 31P magnetic resonance spectroscopy: possible clinical significance.
    Cohen JS
    Mayo Clin Proc; 1988 Dec; 63(12):1199-207. PubMed ID: 3059078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time changes in 1H and 31P NMR spectra of malignant human mammary epithelial cells during treatment with the anti-inflammatory agent indomethacin.
    Glunde K; Ackerstaff E; Natarajan K; Artemov D; Bhujwalla ZM
    Magn Reson Med; 2002 Nov; 48(5):819-25. PubMed ID: 12417996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.