BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24764773)

  • 1. A new approach for clustered MCs classification with sparse features learning and TWSVM.
    Zhang XS
    ScientificWorldJournal; 2014; 2014():970287. PubMed ID: 24764773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications.
    Wei L; Yang Y; Nishikawa RM; Jiang Y
    IEEE Trans Med Imaging; 2005 Mar; 24(3):371-80. PubMed ID: 15754987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance vector machine for automatic detection of clustered microcalcifications.
    Wei L; Yang Y; Nishikawa RM; Wernick MN; Edwards A
    IEEE Trans Med Imaging; 2005 Oct; 24(10):1278-85. PubMed ID: 16229415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A support vector machine approach for detection of microcalcifications.
    El-Naqa I; Yang Y; Wernick MN; Galatsanos NP; Nishikawa RM
    IEEE Trans Med Imaging; 2002 Dec; 21(12):1552-63. PubMed ID: 12588039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.
    Wang H; Feng J; Wang H
    Technol Health Care; 2017 Jul; 25(S1):325-336. PubMed ID: 28582921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated feature set selection and its application to MCC identification in digital mammograms for breast cancer detection.
    Huang YJ; Chan DY; Cheng DC; Ho YJ; Tsai PP; Shen WC; Chen RF
    Sensors (Basel); 2013 Apr; 13(4):4855-75. PubMed ID: 23580053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CADx scheme for mammography empowered with topological information from clustered microcalcifications' atlases.
    Andreadis II; Spyrou GM; Nikita KS
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):166-73. PubMed ID: 25073178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach.
    Sahiner B; Chan HP; Hadjiiski LM; Helvie MA; Wei J; Zhou C; Lu Y
    Med Phys; 2012 Jan; 39(1):28-39. PubMed ID: 22225272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-domain features for reducing false positives in automated detection of clustered microcalcifications in digital breast tomosynthesis.
    Zhang F; Wu S; Zhang C; Chen Q; Yang X; Jiang K; Zheng J
    Med Phys; 2019 Mar; 46(3):1300-1308. PubMed ID: 30661242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass type-specific sparse representation for mass classification in computer-aided detection on mammograms.
    Kim DH; Lee SH; Ro YM
    Biomed Eng Online; 2013; 12 Suppl 1(Suppl 1):S3. PubMed ID: 24564973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer aided detection of clusters of microcalcifications on full field digital mammograms.
    Ge J; Sahiner B; Hadjiiski LM; Chan HP; Wei J; Helvie MA; Zhou C
    Med Phys; 2006 Aug; 33(8):2975-88. PubMed ID: 16964876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A similarity learning approach to content-based image retrieval: application to digital mammography.
    El-Naqa I; Yang Y; Galatsanos NP; Nishikawa RM; Wernick MN
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1233-44. PubMed ID: 15493691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SVM and neural networks comparison in mammographic CAD.
    García-Orellana CJ; Gallardo-Caballero R; Macías-Macias M; González-Velasco H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3204-7. PubMed ID: 18002677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features.
    Sakai A; Onishi Y; Matsui M; Adachi H; Teramoto A; Saito K; Fujita H
    Radiol Phys Technol; 2020 Mar; 13(1):27-36. PubMed ID: 31686300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcalcification detection based on wavelet domain hidden markov tree model: study for inclusion to computer aided diagnostic prompting system.
    Regentova E; Zhang L; Zheng J; Veni G
    Med Phys; 2007 Jun; 34(6):2206-19. PubMed ID: 17654922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. False Positive Reduction by an Annular Model as a Set of Few Features for Microcalcification Detection to Assist Early Diagnosis of Breast Cancer.
    Hernández-Capistrán J; Martínez-Carballido JF; Rosas-Romero R
    J Med Syst; 2018 Jun; 42(8):134. PubMed ID: 29915992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated regional registration and characterization of corresponding microcalcification clusters on temporal pairs of mammograms for interval change analysis.
    Filev P; Hadjiiski L; Chan HP; Sahiner B; Ge J; Helvie MA; Roubidoux M; Zhou C
    Med Phys; 2008 Dec; 35(12):5340-50. PubMed ID: 19175093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic detection of microcalcifications with multi-fractal spectrum.
    Ding Y; Dai H; Zhang H
    Biomed Mater Eng; 2014; 24(6):3049-54. PubMed ID: 25227013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.
    Zyout I; Czajkowska J; Grzegorzek M
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():95-107. PubMed ID: 25795630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of clusters of microcalcifications in digital breast tomosynthesis.
    Ho CP; Tromans C; Schnabel JA; Brady M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3166-9. PubMed ID: 21096808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.