These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24765525)

  • 1. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass.
    Goodman CA; Hornberger TA
    F1000Prime Rep; 2014; 6():20. PubMed ID: 24765525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-coding RNAs.
    Chen R; Lei S; Jiang T; She Y; Shi H
    Front Cell Dev Biol; 2020; 8():577010. PubMed ID: 33043011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass.
    Yoon MS
    Front Physiol; 2017; 8():788. PubMed ID: 29089899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do not neglect the role of circadian rhythm in muscle atrophy.
    Zhang H; Liang J; Chen N
    Ageing Res Rev; 2020 Nov; 63():101155. PubMed ID: 32882420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways.
    Brooks NE; Myburgh KH
    Front Physiol; 2014; 5():99. PubMed ID: 24672488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TWEAK and TRAF6 regulate skeletal muscle atrophy.
    Kumar A; Bhatnagar S; Paul PK
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):233-9. PubMed ID: 22366923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of muscle atrophy: wasting away from the outside in: an introduction.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1856-9. PubMed ID: 19727029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle wasting in chronic kidney disease: the emerging role of microRNAs.
    Robinson KA; Baker LA; Graham-Brown MPM; Watson EL
    Nephrol Dial Transplant; 2020 Sep; 35(9):1469-1478. PubMed ID: 31603229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signaling Pathways That Control Muscle Mass.
    Vainshtein A; Sandri M
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32635462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of mTOR by mechanically induced signaling events in skeletal muscle.
    Hornberger TA; Sukhija KB; Chien S
    Cell Cycle; 2006 Jul; 5(13):1391-6. PubMed ID: 16855395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders.
    Koopman R; Ryall JG; Church JE; Lynch GS
    Curr Opin Clin Nutr Metab Care; 2009 Nov; 12(6):601-6. PubMed ID: 19741516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of skeletal muscle plasticity by glycogen synthase kinase-3β: a potential target for the treatment of muscle wasting.
    Verhees KJ; Pansters NA; Schols AM; Langen RC
    Curr Pharm Des; 2013; 19(18):3276-98. PubMed ID: 23151136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle wasting in the presence of disease, why is it so variable?
    Kemp PR; Griffiths M; Polkey MI
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1038-1055. PubMed ID: 30588725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of muscle protein turnover in response to emphysema and acute pulmonary inflammation.
    Ceelen JJM; Schols AMWJ; van Hoof SJ; de Theije CC; Verhaegen F; Langen RCJ
    Respir Res; 2017 May; 18(1):75. PubMed ID: 28464882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy.
    Powers SK; Ozdemir M; Hyatt H
    Antioxid Redox Signal; 2020 Sep; 33(8):559-569. PubMed ID: 31941357
    [No Abstract]   [Full Text] [Related]  

  • 17. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle.
    Shad BJ; Smeuninx B; Atherton PJ; Breen L
    Appl Physiol Nutr Metab; 2015 Dec; 40(12):1233-41. PubMed ID: 26566242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle.
    Tamura Y; Kitaoka Y; Matsunaga Y; Hoshino D; Hatta H
    J Physiol; 2015 Jun; 593(12):2707-20. PubMed ID: 25900738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippo Pathway and Skeletal Muscle Mass Regulation in Mammals: A Controversial Relationship.
    Gnimassou O; Francaux M; Deldicque L
    Front Physiol; 2017; 8():190. PubMed ID: 28424630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mTORC1 and the regulation of skeletal muscle anabolism and mass.
    Adegoke OA; Abdullahi A; Tavajohi-Fini P
    Appl Physiol Nutr Metab; 2012 Jun; 37(3):395-406. PubMed ID: 22509811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.