These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24766005)

  • 1. Superconductivity on the brink of spin-charge order in a doped honeycomb bilayer.
    Vafek O; Murray JM; Cvetkovic V
    Phys Rev Lett; 2014 Apr; 112(14):147002. PubMed ID: 24766005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiferromagnetism in the Hubbard model on the Bernal-stacked honeycomb bilayer.
    Lang TC; Meng ZY; Scherer MM; Uebelacker S; Assaad FF; Muramatsu A; Honerkamp C; Wessel S
    Phys Rev Lett; 2012 Sep; 109(12):126402. PubMed ID: 23005964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral Spin Density Wave and d+id Superconductivity in the Magic-Angle-Twisted Bilayer Graphene.
    Liu CC; Zhang LD; Chen WQ; Yang F
    Phys Rev Lett; 2018 Nov; 121(21):217001. PubMed ID: 30517799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broken-symmetry states in doubly gated suspended bilayer graphene.
    Weitz RT; Allen MT; Feldman BE; Martin J; Yacoby A
    Science; 2010 Nov; 330(6005):812-6. PubMed ID: 20947726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction-Induced Dirac Fermions from Quadratic Band Touching in Bilayer Graphene.
    Pujari S; Lang TC; Murthy G; Kaul RK
    Phys Rev Lett; 2016 Aug; 117(8):086404. PubMed ID: 27588872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unconventional fermi surface instabilities in the kagome Hubbard model.
    Kiesel ML; Platt C; Thomale R
    Phys Rev Lett; 2013 Mar; 110(12):126405. PubMed ID: 25166827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent spin-valley-orbital physics by spontaneous parity breaking.
    Hayami S; Kusunose H; Motome Y
    J Phys Condens Matter; 2016 Oct; 28(39):395601. PubMed ID: 27502319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene.
    Mao Y; Zhong J
    Nanotechnology; 2008 May; 19(20):205708. PubMed ID: 21825751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-Orbital Density Wave and a Mott Insulator in a Two-Orbital Hubbard Model on a Honeycomb Lattice.
    Zhu Z; Sheng DN; Fu L
    Phys Rev Lett; 2019 Aug; 123(8):087602. PubMed ID: 31491210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge-4e Superconductivity from Multicomponent Nematic Pairing: Application to Twisted Bilayer Graphene.
    Fernandes RM; Fu L
    Phys Rev Lett; 2021 Jul; 127(4):047001. PubMed ID: 34355931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge and spin order on the triangular lattice: NaxCoO2 at x=0.5.
    Zhou S; Wang Z
    Phys Rev Lett; 2007 Jun; 98(22):226402. PubMed ID: 17677866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-unit-cell nematic charge order in the titanium-oxypnictide family of superconductors.
    Frandsen BA; Bozin ES; Hu H; Zhu Y; Nozaki Y; Kageyama H; Uemura YJ; Yin WG; Billinge SJ
    Nat Commun; 2014 Dec; 5():5761. PubMed ID: 25482113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral d-wave superconductivity in doped graphene.
    Black-Schaffer AM; Honerkamp C
    J Phys Condens Matter; 2014 Oct; 26(42):423201. PubMed ID: 25238054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitonic quasiparticles in a spin-orbit Mott insulator.
    Kim J; Daghofer M; Said AH; Gog T; van den Brink J; Khaliullin G; Kim BJ
    Nat Commun; 2014 Jul; 5():4453. PubMed ID: 25029968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene.
    Maher P; Wang L; Gao Y; Forsythe C; Taniguchi T; Watanabe K; Abanin D; Papić Z; Cadden-Zimansky P; Hone J; Kim P; Dean CR
    Science; 2014 Jul; 345(6192):61-4. PubMed ID: 24994646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakdown of the interlayer coherence in twisted bilayer graphene.
    Kim Y; Yun H; Nam SG; Son M; Lee DS; Kim DC; Seo S; Choi HC; Lee HJ; Lee SW; Kim JS
    Phys Rev Lett; 2013 Mar; 110(9):096602. PubMed ID: 23496735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New mechanism and exact theory of superconductivity from strong repulsive interaction.
    Crépel V; Fu L
    Sci Adv; 2021 Jul; 7(30):. PubMed ID: 34301605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kohn-Luttinger Mechanism Driven Exotic Topological Superconductivity on the Penrose Lattice.
    Cao Y; Zhang Y; Liu YB; Liu CC; Chen WQ; Yang F
    Phys Rev Lett; 2020 Jul; 125(1):017002. PubMed ID: 32678627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metals.
    Steglich F; Arndt J; Stockert O; Friedemann S; Brando M; Klingner C; Krellner C; Geibel C; Wirth S; Kirchner S; Si Q
    J Phys Condens Matter; 2012 Jul; 24(29):294201. PubMed ID: 22773300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of Fermi pockets in a new excitonic charge-density-wave melted superconductor.
    Qian D; Hsieh D; Wray L; Morosan E; Wang NL; Xia Y; Cava RJ; Hasan MZ
    Phys Rev Lett; 2007 Mar; 98(11):117007. PubMed ID: 17501082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.