These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24766026)

  • 1. Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting.
    Mills TJ; Lin F; Boettcher SW
    Phys Rev Lett; 2014 Apr; 112(14):148304. PubMed ID: 24766026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes.
    Lin F; Bachman BF; Boettcher SW
    J Phys Chem Lett; 2015 Jul; 6(13):2427-33. PubMed ID: 26266713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes.
    Lin F; Boettcher SW
    Nat Mater; 2014 Jan; 13(1):81-6. PubMed ID: 24292419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts.
    Trotochaud L; Mills TJ; Boettcher SW
    J Phys Chem Lett; 2013 Mar; 4(6):931-5. PubMed ID: 26291358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forming buried junctions to enhance the photovoltage generated by cuprous oxide in aqueous solutions.
    Dai P; Li W; Xie J; He Y; Thorne J; McMahon G; Zhan J; Wang D
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13493-7. PubMed ID: 25284124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting.
    Kang D; Kim TW; Kubota SR; Cardiel AC; Cha HG; Choi KS
    Chem Rev; 2015 Dec; 115(23):12839-87. PubMed ID: 26538328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications.
    Bertoluzzi L; Bisquert J
    J Phys Chem Lett; 2012 Sep; 3(17):2517-22. PubMed ID: 26292143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanochannel-Induced Efficient Water Splitting at the Superhydrophobic Interface.
    Jiang E; Guo C; Zhao X; Chao Y; Ma D; Huo P; Yan Y; Zhou P; Yan Y
    ACS Nano; 2023 Jun; 17(11):10774-10782. PubMed ID: 37252947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives.
    Peter LM; Upul Wijayantha KG
    Chemphyschem; 2014 Jul; 15(10):1983-95. PubMed ID: 24819303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes.
    Klahr B; Gimenez S; Fabregat-Santiago F; Bisquert J; Hamann TW
    J Am Chem Soc; 2012 Oct; 134(40):16693-700. PubMed ID: 22950478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanonet-based hematite heteronanostructures for efficient solar water splitting.
    Lin Y; Zhou S; Sheehan SW; Wang D
    J Am Chem Soc; 2011 Mar; 133(8):2398-401. PubMed ID: 21306153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices.
    McCrory CC; Jung S; Ferrer IM; Chatman SM; Peters JC; Jaramillo TF
    J Am Chem Soc; 2015 Apr; 137(13):4347-57. PubMed ID: 25668483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.