BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24766214)

  • 1. Model studies on the oxidation of benzoyl methionine in a carbohydrate degradation system.
    Hellwig M; Löbmann K; Orywol T; Voigt A
    J Agric Food Chem; 2014 May; 62(19):4425-33. PubMed ID: 24766214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide backbone cleavage by α-amidation is enhanced at methionine residues.
    Hellwig M; Löbmann K; Orywol T
    J Pept Sci; 2015 Jan; 21(1):17-23. PubMed ID: 25420700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of reactive alpha-dicarbonyl compounds generated from the Maillard reactions of L-methionine with reducing sugars via their stable quinoxaline derivatives.
    Pfeifer YV; Kroh LW
    J Agric Food Chem; 2010 Jul; 58(14):8293-9. PubMed ID: 20572669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of methionine oxidation on the aggregation of recombinant human growth hormone.
    Mulinacci F; Poirier E; Capelle MA; Gurny R; Arvinte T
    Eur J Pharm Biopharm; 2013 Sep; 85(1):42-52. PubMed ID: 23958317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of chemically reducing species in the phosphate ion catalyzed degradation of reducing sugars.
    Rizzi GP; Amba EE; Heineman WR
    J Agric Food Chem; 2010 Sep; 58(17):9739-43. PubMed ID: 20712365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionine-associated peptide α-amidation is directed both to the N- and the C-terminal amino acids.
    Sajapin J; Kulas A; Hellwig M
    J Pept Sci; 2022 Nov; 28(11):e3429. PubMed ID: 35694817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars.
    Usui T; Yanagisawa S; Ohguchi M; Yoshino M; Kawabata R; Kishimoto J; Arai Y; Aida K; Watanabe H; Hayase F
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2465-72. PubMed ID: 17928698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Products of Cu(II)-catalyzed oxidation of the N-terminal fragments of alpha-synuclein in the presence of hydrogen peroxide.
    Kowalik-Jankowska T; Rajewska A; Jankowska E; Wiśniewska K; Grzonka Z
    J Inorg Biochem; 2006 Oct; 100(10):1623-31. PubMed ID: 16839607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragmentation pathways during Maillard-induced carbohydrate degradation.
    Smuda M; Glomb MA
    J Agric Food Chem; 2013 Oct; 61(43):10198-208. PubMed ID: 23425499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical pathways of peptide degradation. V. Ascorbic acid promotes rather than inhibits the oxidation of methionine to methionine sulfoxide in small model peptides.
    Li S; Schöneich C; Wilson GS; Borchardt RT
    Pharm Res; 1993 Nov; 10(11):1572-9. PubMed ID: 8290469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide.
    Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z
    Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of toxic α-dicarbonyl compounds, glyoxal, methylglyoxal, and diacetyl, released to the headspace of lipid commodities upon heat treatment.
    Jiang Y; Hengel M; Pan C; Seiber JN; Shibamoto T
    J Agric Food Chem; 2013 Feb; 61(5):1067-71. PubMed ID: 23317342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of solution conditions on methionine oxidation in albinterferon alfa-2b and the role of oxidation in its conformation and aggregation.
    Chou DK; Krishnamurthy R; Manning MC; Randolph TW; Carpenter JF
    J Pharm Sci; 2013 Feb; 102(2):660-73. PubMed ID: 23203978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Methionine on the Thermal Degradation of
    Deng S; Cui H; Hayat K; Hussain S; Tahir MU; Zhai Y; Zhang Q; Zhang X; Ho CT
    J Agric Food Chem; 2021 May; 69(17):5167-5177. PubMed ID: 33891395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrate and amino acid degradation pathways in L-methionine/D-[13C] glucose model systems.
    Yaylayan VA; Keyhani A
    J Agric Food Chem; 2001 Feb; 49(2):800-3. PubMed ID: 11262032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of glucose: reinvestigation of reactive alpha-Dicarbonyl compounds.
    Gobert J; Glomb MA
    J Agric Food Chem; 2009 Sep; 57(18):8591-7. PubMed ID: 19711949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pyrazines formation in methionine/glucose and corresponding Amadori rearrangement product model.
    Deng S; Cui H; Hayat K; Zhai Y; Zhang Q; Zhang X; Ho CT
    Food Chem; 2022 Jul; 382():132500. PubMed ID: 35245757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of a modified lysine with aldehydic and diketonic dicarbonyl compounds: an electrospray mass spectrometry structure/activity study.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Feb; 41(2):216-28. PubMed ID: 16421861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food-derived 1,2-dicarbonyl compounds and their role in diseases.
    Hellwig M; Gensberger-Reigl S; Henle T; Pischetsrieder M
    Semin Cancer Biol; 2018 Apr; 49():1-8. PubMed ID: 29174601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.