BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24766214)

  • 21. Glyoxal formation by Fenton-induced degradation of carbohydrates and related compounds.
    Manini P; La Pietra P; Panzella L; Napolitano A; d'Ischia M
    Carbohydr Res; 2006 Aug; 341(11):1828-33. PubMed ID: 16697986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neighboring pyrrolidine amide participation in thioether oxidation. Methionine as a "hopping" site.
    Glass RS; Schöneich C; Wilson GS; Nauser T; Yamamoto T; Lorance E; Nichol GS; Ammam M
    Org Lett; 2011 Jun; 13(11):2837-9. PubMed ID: 21563771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and determination of alpha-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee.
    Daglia M; Papetti A; Aceti C; Sordelli B; Spini V; Gazzani G
    J Agric Food Chem; 2007 Oct; 55(22):8877-82. PubMed ID: 17927199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The reduction of oxidized methionine residues in peptide thioesters with NH4I-Me2S.
    Hackenberger CP
    Org Biomol Chem; 2006 Jun; 4(11):2291-5. PubMed ID: 16729139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. alpha-Dicarbonyl compounds--key intermediates for the formation of carbohydrate-based melanoidins.
    Kroh LW; Fiedler T; Wagner J
    Ann N Y Acad Sci; 2008 Apr; 1126():210-5. PubMed ID: 18448818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of fluorogenic Smith degradation products of 7-(1,3-disulfonaphtyl)amino-disaccharides for linkage position analysis of carbohydrates.
    Makino Y; Yonezaki K; Omichi K
    J Biochem; 2002 Dec; 132(6):961-6. PubMed ID: 12473199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiation chemical studies of methionine in aqueous solution: understanding the role of molecular oxygen.
    Barata-Vallejo S; Ferreri C; Postigo A; Chatgilialoglu C
    Chem Res Toxicol; 2010 Jan; 23(1):258-63. PubMed ID: 20038187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of Pyrazine Formation Intervened by Oxidized Methionines during Thermal Degradation of the Methionine-Glucose Amadori Compound.
    Deng S; Zhai Y; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Nov; 70(45):14457-14467. PubMed ID: 36342227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of oligosaccharides in nonenzymatic browning by formation of alpha-dicarbonyl compounds via a "peeling off" mechanism.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2000 Dec; 48(12):6219-26. PubMed ID: 11312795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of in vitro digestion on free α-dicarbonyl compounds in balsamic vinegars.
    Papetti A; Mascherpa D; Marrubini G; Gazzani G
    J Food Sci; 2013 Apr; 78(4):C514-9. PubMed ID: 23464604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Residual metals cause variability in methionine oxidation measurements in protein pharmaceuticals using LC-UV/MS peptide mapping.
    Zang L; Carlage T; Murphy D; Frenkel R; Bryngelson P; Madsen M; Lyubarskaya Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 May; 895-896():71-6. PubMed ID: 22483985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic method for the quantification of methionine sulfoxide.
    Brock JW; Cotham WC; Ames JM; Thorpe SR; Baynes JW
    Ann N Y Acad Sci; 2005 Jun; 1043():284-9. PubMed ID: 16037250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elimination of oxidative degradation during the per-O-methylation of carbohydrates.
    Ciucanu I; Costello CE
    J Am Chem Soc; 2003 Dec; 125(52):16213-9. PubMed ID: 14692762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody.
    Chumsae C; Gaza-Bulseco G; Sun J; Liu H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):285-94. PubMed ID: 17182291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oligomers of the prion protein fragment 106-126 are likely assembled from beta-hairpins in solution, and methionine oxidation inhibits assembly without altering the peptide's monomeric conformation.
    Grabenauer M; Wu C; Soto P; Shea JE; Bowers MT
    J Am Chem Soc; 2010 Jan; 132(2):532-9. PubMed ID: 20020713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.
    Lioe H; Laskin J; Reid GE; O'Hair RA
    J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein glycation: creation of catalytic sites for free radical generation.
    Yim MB; Yim HS; Lee C; Kang SO; Chock PB
    Ann N Y Acad Sci; 2001 Apr; 928():48-53. PubMed ID: 11795527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The decomposition of reducing sugars and amines in the Maillard reaction].
    Ledl F
    Z Ernahrungswiss; 1991 Feb; 30(1):4-17. PubMed ID: 1858427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The oxidative products of methionine as site and content biomarkers for peptide oxidation.
    Zong W; Liu R; Wang M; Zhang P; Sun F; Tian Y
    J Pept Sci; 2010 Mar; 16(3):148-52. PubMed ID: 20146247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Maillard reaction of bisoprolol fumarate with various reducing carbohydrates.
    Szalka M; Lubczak J; Naróg D; Laskowski M; Kaczmarski K
    Eur J Pharm Sci; 2014 Aug; 59():1-11. PubMed ID: 24746680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.