These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24766275)

  • 21. Indoor sorption of surrogates for sarin and related nerve agents.
    Singer BC; Hodgson AT; Destaillats H; Hotchi T; Revzan KL; Sextro RG
    Environ Sci Technol; 2005 May; 39(9):3203-14. PubMed ID: 15926571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective enrichment of the degradation products of organophosphorus nerve agents by zirconia based solid-phase extraction.
    Kanaujia PK; Pardasani D; Tak V; Purohit AK; Dubey DK
    J Chromatogr A; 2011 Sep; 1218(38):6612-20. PubMed ID: 21862029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of ion-molecule reactions with dimethyl methylphosphonate at 298 K for chemical ionization mass spectrometry detection of GX.
    Midey AJ; Miller TM; Viggiano AA
    J Phys Chem A; 2009 Apr; 113(17):4982-9. PubMed ID: 19385679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sorption of dimethyl methylphosphonate within Langmuir-Blodgett films of trisilanolphenyl polyhedral oligomeric silsesquioxane.
    Ferguson-McPherson MK; Low ER; Esker AR; Morris JR
    J Phys Chem B; 2005 Oct; 109(40):18914-20. PubMed ID: 16853435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of nerve agents by an organophosphate-degrading agent (OpdA).
    Dawson RM; Pantelidis S; Rose HR; Kotsonis SE
    J Hazard Mater; 2008 Sep; 157(2-3):308-14. PubMed ID: 18258361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles.
    Tuccitto N; Spitaleri L; Li Destri G; Pappalardo A; Gulino A; Trusso Sfrazzetto G
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33291853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HFIP-Functionalized Co
    Alali KT; Liu J; Chen R; Liu Q; Zhang H; Li J; Hou J; Li R; Wang J
    Chemistry; 2019 Sep; 25(51):11892-11902. PubMed ID: 31309626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alumina-supported oxime for the degradation of sarin and diethylchlorophosphate.
    Verma AK; Srivastava AK; Singh B; Shah D; Shrivastava S; Shinde CK
    Chemosphere; 2013 Feb; 90(8):2254-60. PubMed ID: 23206531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents.
    Wang F; Gu H; Swager TM
    J Am Chem Soc; 2008 Apr; 130(16):5392-3. PubMed ID: 18373343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing.
    Kwon OS; Park SJ; Lee JS; Park E; Kim T; Park HW; You SA; Yoon H; Jang J
    Nano Lett; 2012 Jun; 12(6):2797-802. PubMed ID: 22545863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene Field Effect Transistors: A Sensitive Platform for Detecting Sarin.
    Alzate-Carvajal N; Park J; Pykal M; Lazar P; Rautela R; Scarfe S; Scarfe L; Ménard JM; Otyepka M; Luican-Mayer A
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61751-61757. PubMed ID: 34910450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of textural properties on the response of a SnO2-based gas sensor for the detection of chemical warfare agents.
    Lee SC; Kim SY; Lee WS; Jung SY; Hwang BW; Ragupathy D; Lee DD; Lee SY; Kim JC
    Sensors (Basel); 2011; 11(7):6893-904. PubMed ID: 22163991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impurity profiling of a chemical weapon precursor for possible forensic signatures by comprehensive two-dimensional gas chromatography/mass spectrometry and chemometrics.
    Hoggard JC; Wahl JH; Synovec RE; Mong GM; Fraga CG
    Anal Chem; 2010 Jan; 82(2):689-98. PubMed ID: 20014817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional photonic crystal sensor enabled by hydrophobic hydrogen-bonded organic Frameworks@Metal-Organic frameworks for trace nerve agents detection.
    Wang Z; Wang Y; Gao Y; Yan J; Chen Y
    Talanta; 2024 Jul; 274():125974. PubMed ID: 38552476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zinc Phthalocyanine Sensing Mechanism Quantification for Potential Application in Chemical Warfare Agent Detectors.
    Powroźnik P; Solecka B; Pander P; Jakubik W; Dias FB; Krzywiecki M
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560314
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Shaik M; Rao VK; Ramana GV; Halder M; Gutch PK; Pandey P; Jain R
    RSC Adv; 2018 Feb; 8(15):8240-8245. PubMed ID: 35541990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ni-rGO Sensor Combined with Human Olfactory Receptor-Embedded Nanodiscs for Detecting Gas-Phase DMMP as a Simulant of Nerve Agents.
    Kim SO; Kim SG; Ahn H; Yoo J; Jang J; Park TH
    ACS Sens; 2023 Aug; 8(8):3095-3103. PubMed ID: 37555584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid quantification of dimethyl methylphosphonate from activated carbon particles by static headspace gas chromatography mass spectrometry.
    Mitchell BL; Billingsley BG; Logue BA
    J Chromatogr A; 2013 Jun; 1293():120-5. PubMed ID: 23639122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of pyrophosphate-like adducts from nerve agents sarin, soman and cyclosarin in phosphate buffer: implications for analytical and toxicological investigations.
    Gäb J; John H; Blum MM
    Toxicol Lett; 2011 Jan; 200(1-2):34-40. PubMed ID: 20979985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.