These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24766474)

  • 1. Direct detection and speciation of trace explosives using a nanoporous multifunctional microcantilever.
    Lee D; Kim S; Jeon S; Thundat T
    Anal Chem; 2014 May; 86(10):5077-82. PubMed ID: 24766474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Nose for Recognition of Volatile Vapor Mixtures Using a Nanopore-Enhanced Opto-Calorimetric Spectroscopy.
    Chae I; Lee D; Kim S; Thundat T
    Anal Chem; 2015 Jul; 87(14):7125-32. PubMed ID: 26111073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.
    Kim S; Lee D; Liu X; Van Neste C; Jeon S; Thundat T
    Sci Rep; 2013; 3():1111. PubMed ID: 23346368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection.
    Wang D; Chen A; Jen AK
    Phys Chem Chem Phys; 2013 Apr; 15(14):5017-21. PubMed ID: 23443512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced nanoplasmonic heating in standoff sensing of explosive residues with infrared reflection-absorption spectroscopy.
    Simin N; Park Y; Lee D; Thundat T; Kim S
    Opt Lett; 2020 Apr; 45(8):2144-2147. PubMed ID: 32287177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array.
    Lee D; Kim S; Van Neste CW; Lee M; Jeon S; Thundat T
    Nanotechnology; 2014 Jan; 25(3):035501. PubMed ID: 24346340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection.
    Seena V; Fernandes A; Pant P; Mukherji S; Rao VR
    Nanotechnology; 2011 Jul; 22(29):295501. PubMed ID: 21673380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standoff Mechanical Resonance Spectroscopy Based on Infrared-Sensitive Hydrogel Microcantilevers.
    Chae I; Khan MF; Song J; Kang T; Lee J; Thundat T
    Anal Chem; 2016 Oct; 88(19):9678-9684. PubMed ID: 27599117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever.
    Lee JH; Hwang KS; Park J; Yoon KH; Yoon DS; Kim TS
    Biosens Bioelectron; 2005 Apr; 20(10):2157-62. PubMed ID: 15741091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation of energetic materials on a microcantilever using surface reduction.
    Yi D; Senesac L; Thundat T
    Scanning; 2008; 30(2):208-12. PubMed ID: 18288710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoupled cantilever arms for highly versatile and sensitive temperature and heat flux measurements.
    Burg BR; Tong JK; Hsu WC; Chen G
    Rev Sci Instrum; 2012 Oct; 83(10):104902. PubMed ID: 23126793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct real-time detection of vapors from explosive compounds.
    Ewing RG; Clowers BH; Atkinson DA
    Anal Chem; 2013 Nov; 85(22):10977-83. PubMed ID: 24090362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives.
    Chen Y; Xu P; Li X
    Nanotechnology; 2010 Jul; 21(26):265501. PubMed ID: 20534897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Micro-Preconcentrator Combined Olfactory Sensing System with a Micromechanical Cantilever Sensor for Detecting 2,4-Dinitrotoluene Gas Vapor.
    Chae MS; Kim J; Yoo YK; Kang JY; Lee JH; Hwang KS
    Sensors (Basel); 2015 Jul; 15(8):18167-77. PubMed ID: 26213944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu(OH)₂ and CuO Nanorod Synthesis on Piezoresistive Cantilevers for the Selective Detection of Nitrogen Dioxide.
    Schlur L; Hofer M; Ahmad A; Bonnot K; Holz M; Spitzer D
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29621172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs).
    Kang SW; Fragala J; Banerjee D
    Sensors (Basel); 2015 Aug; 15(9):21785-806. PubMed ID: 26334276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and photocatalytic characterizations of ordered nanoporous X-doped (X = N, C, S, Ru, Te, and Si) TiO2/Al2O3 films on ITO/glass.
    Chu SZ; Inoue S; Wada K; Li D; Suzuki J
    Langmuir; 2005 Aug; 21(17):8035-41. PubMed ID: 16089417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems.
    Vancura C; Rüegg M; Li Y; Hagleitner C; Hierlemann A
    Anal Chem; 2005 May; 77(9):2690-9. PubMed ID: 15859582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-phase chemical and biochemical detection using fully integrated magnetically actuated complementary metal oxide semiconductor resonant cantilever sensor systems.
    Vancura C; Li Y; Lichtenberg J; Kirstein KU; Hierlemann A; Josse F
    Anal Chem; 2007 Feb; 79(4):1646-54. PubMed ID: 17297968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double side nanostructuring of microcantilever sensors with TiO
    Thomas G; Gerer G; Schlur L; Schnell F; Cottineau T; Keller V; Spitzer D
    Nanoscale; 2020 Jul; 12(25):13338-13345. PubMed ID: 32573578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.