These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 24766482)

  • 21. CCSD(T) complete basis set limit relative energies for low-lying water hexamer structures.
    Bates DM; Tschumper GS
    J Phys Chem A; 2009 Apr; 113(15):3555-9. PubMed ID: 19354314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isomers of the uracil dimer: an ab initio benchmark study.
    Frey JA; Müller A; Losada M; Leutwyler S
    J Phys Chem B; 2007 Apr; 111(13):3534-42. PubMed ID: 17388514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benchmark ab Initio Characterization of the Complex Potential Energy Surface of the F
    Tajti V; Czakó G
    J Phys Chem A; 2017 Apr; 121(14):2847-2854. PubMed ID: 28338332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: comparison of the methods of Helgaker et al. and Feller.
    Tsuzuki S; Honda K; Uchimaru T; Mikami M
    J Chem Phys; 2006 Mar; 124(11):114304. PubMed ID: 16555885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance and Reliability of Small Basis Set CCSD(T) Corrections to MP2 Binding and Relative Energies of Water Clusters.
    Temelso B; Renner CR; Shields GC
    J Chem Theory Comput; 2015 Apr; 11(4):1439-48. PubMed ID: 26574355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases.
    Marshall MS; Burns LA; Sherrill CD
    J Chem Phys; 2011 Nov; 135(19):194102. PubMed ID: 22112061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet?
    Patkowski K
    J Chem Phys; 2012 Jul; 137(3):034103. PubMed ID: 22830679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the global potential energy minimum of (CH
    Andersen J; Voute A; Mihrin D; Heimdal J; Berg RW; Torsson M; Wugt Larsen R
    J Chem Phys; 2017 Jun; 146(24):244311. PubMed ID: 28668045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment.
    Zhang J; Valeev EF
    J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Appointing silver and bronze standards for noncovalent interactions: a comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches.
    Burns LA; Marshall MS; Sherrill CD
    J Chem Phys; 2014 Dec; 141(23):234111. PubMed ID: 25527923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions.
    Marchetti O; Werner HJ
    Phys Chem Chem Phys; 2008 Jun; 10(23):3400-9. PubMed ID: 18535723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer.
    Pitonák M; Riley KE; Neogrády P; Hobza P
    Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water dimer radical cation: structures, vibrational frequencies, and energetics.
    Cheng Q; Evangelista FA; Simmonett AC; Yamaguchi Y; Schaefer HF
    J Phys Chem A; 2009 Dec; 113(49):13779-89. PubMed ID: 19891464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations.
    Hobza P; Sponer J
    J Am Chem Soc; 2002 Oct; 124(39):11802-8. PubMed ID: 12296748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ab initio structural and vibrational investigation of sulfuric acid monohydrate.
    Partanen L; Hänninen V; Halonen L
    J Phys Chem A; 2012 Mar; 116(11):2867-79. PubMed ID: 22260481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level.
    Dabkowska I; Jurecka P; Hobza P
    J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures, energetics and vibrational frequency shifts of hydrated pyrimidine.
    Howard JC; Hammer NI; Tschumper GS
    Chemphyschem; 2011 Dec; 12(17):3262-73. PubMed ID: 21994177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum chemical calculations of the Cl- + CH3I --> CH3Cl + I- potential energy surface.
    Zhang J; Lourderaj U; Addepalli SV; de Jong WA; Hase WL
    J Phys Chem A; 2009 Mar; 113(10):1976-84. PubMed ID: 19115824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An ab initio correlated study of the potential energy surface for the HOBr.H2O complex.
    Santos CM; Faria R; Machado SP; De Almeida WB
    J Chem Phys; 2004 Jul; 121(1):141-8. PubMed ID: 15260531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.