These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24766505)

  • 1. Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane.
    Zaky AM; Chaplin BP
    Environ Sci Technol; 2014 May; 48(10):5857-67. PubMed ID: 24766505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment.
    Zaky AM; Chaplin BP
    Environ Sci Technol; 2013 Jun; 47(12):6554-63. PubMed ID: 23688192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO
    Trellu C; Coetsier C; Rouch JC; Esmilaire R; Rivallin M; Cretin M; Causserand C
    Water Res; 2018 Mar; 131():310-319. PubMed ID: 29306202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes.
    Jing Y; Chaplin BP
    Environ Sci Technol; 2017 Feb; 51(4):2355-2365. PubMed ID: 28072535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrooxidation of chlorophene and dichlorophen by reactive electrochemical membrane: Key determining factors of removal efficiency.
    Zhang K; Wang R; Wang H; Li M; Zhao P; Wang Y; Wang B; Shi H; Zhang W; Gao S; Huang Q
    Environ Res; 2024 Jan; 241():117612. PubMed ID: 37951380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of Perfluorooctanesulfonate by Reactive Electrochemical Membrane Composed of Magnéli Phase Titanium Suboxide.
    Shi H; Wang Y; Li C; Pierce R; Gao S; Huang Q
    Environ Sci Technol; 2019 Dec; 53(24):14528-14537. PubMed ID: 31730354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes.
    Misal SN; Lin MH; Mehraeen S; Chaplin BP
    J Hazard Mater; 2020 Feb; 384():121420. PubMed ID: 31685319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Investigation of Haloacetic Acid Reduction Using Carbon-Ti
    Almassi S; Samonte PRV; Li Z; Xu W; Chaplin BP
    Environ Sci Technol; 2020 Feb; 54(3):1982-1991. PubMed ID: 31876410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Adsorption and Electrochemical Reduction of N-Nitrosodimethylamine Using Carbon-Ti
    Almassi S; Li Z; Xu W; Pu C; Zeng T; Chaplin BP
    Environ Sci Technol; 2019 Jan; 53(2):928-937. PubMed ID: 30547581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode.
    Zaggout FR; Abu Ghalwa N
    J Environ Manage; 2008 Jan; 86(1):291-6. PubMed ID: 17287071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric oxidation mechanism of phenol initiated by OH radical.
    Xu C; Wang L
    J Phys Chem A; 2013 Mar; 117(11):2358-64. PubMed ID: 23438088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical evidences for promoted interfacial reactions: the role of Fe(II) adsorbed onto gamma-Al2O3 and TiO2 in reductive transformation of 2-nitrophenol.
    Li FB; Tao L; Feng CH; Li XZ; Sun KW
    Environ Sci Technol; 2009 May; 43(10):3656-61. PubMed ID: 19544869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anodic oxidation of o-nitrophenol on BDD electrode: variable effects and mechanisms of degradation.
    Rabaaoui N; Saad Mel K; Moussaoui Y; Allagui MS; Bedoui A; Elaloui E
    J Hazard Mater; 2013 Apr; 250-251():447-53. PubMed ID: 23500425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of three different anodes in electrochemical degradation of 4-para-nitrophenol.
    Murugaesan P; Aravind P; Muniyandi NG; Kandasamy S
    Environ Technol; 2015; 36(20):2618-27. PubMed ID: 25885262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical degradation of p-nitrophenol with different processes.
    Jiang P; Zhou J; Zhang A; Zhong Y
    J Environ Sci (China); 2010; 22(4):500-6. PubMed ID: 20617724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-oxidation of organic pollutants by reactive electrochemical membranes.
    Trellu C; Chaplin BP; Coetsier C; Esmilaire R; Cerneaux S; Causserand C; Cretin M
    Chemosphere; 2018 Oct; 208():159-175. PubMed ID: 29864707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.
    Nie C; Shao N; Wang B; Yuan D; Sui X; Wu H
    Chemosphere; 2016 Jul; 154():604-612. PubMed ID: 27093694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of nitrophenols by cathode reduction and electro-Fenton methods.
    Yuan S; Tian M; Cui Y; Lin L; Lu X
    J Hazard Mater; 2006 Sep; 137(1):573-80. PubMed ID: 16650528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation.
    Chu YY; Qian Y; Wang WJ; Deng XL
    J Hazard Mater; 2012 Jan; 199-200():179-85. PubMed ID: 22104767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface engineering strategy of a Ti
    Li W; Xiao R; Xu J; Lin H; Yang K; Li W; He K; Tang L; Chen J; Wu Y; Lv S
    Water Res; 2022 Jun; 216():118287. PubMed ID: 35334338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.