These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24766612)

  • 1. Normalyzer: a tool for rapid evaluation of normalization methods for omics data sets.
    Chawade A; Alexandersson E; Levander F
    J Proteome Res; 2014 Jun; 13(6):3114-20. PubMed ID: 24766612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NormalyzerDE: Online Tool for Improved Normalization of Omics Expression Data and High-Sensitivity Differential Expression Analysis.
    Willforss J; Chawade A; Levander F
    J Proteome Res; 2019 Feb; 18(2):732-740. PubMed ID: 30277078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method.
    Narasimhan M; Kannan S; Chawade A; Bhattacharjee A; Govekar R
    J Transl Med; 2019 May; 17(1):184. PubMed ID: 31151397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DAnTE: a statistical tool for quantitative analysis of -omics data.
    Polpitiya AD; Qian WJ; Jaitly N; Petyuk VA; Adkins JN; Camp DG; Anderson GA; Smith RD
    Bioinformatics; 2008 Jul; 24(13):1556-8. PubMed ID: 18453552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.
    Teo G; Kim S; Tsou CC; Collins B; Gingras AC; Nesvizhskii AI; Choi H
    J Proteomics; 2015 Nov; 129():108-120. PubMed ID: 26381204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition.
    Karpievitch YV; Taverner T; Adkins JN; Callister SJ; Anderson GA; Smith RD; Dabney AR
    Bioinformatics; 2009 Oct; 25(19):2573-80. PubMed ID: 19602524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying differentially expressed proteins in two-dimensional electrophoresis experiments: inputs from transcriptomics statistical tools.
    Artigaud S; Gauthier O; Pichereau V
    Bioinformatics; 2013 Nov; 29(21):2729-34. PubMed ID: 23986565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Merging multiple omics datasets in silico: statistical analyses and data interpretation.
    Arakawa K; Tomita M
    Methods Mol Biol; 2013; 985():459-70. PubMed ID: 23417818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling.
    Ting L; Cowley MJ; Hoon SL; Guilhaus M; Raftery MJ; Cavicchioli R
    Mol Cell Proteomics; 2009 Oct; 8(10):2227-42. PubMed ID: 19605365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PatternLab for proteomics: a tool for differential shotgun proteomics.
    Carvalho PC; Fischer JS; Chen EI; Yates JR; Barbosa VC
    BMC Bioinformatics; 2008 Jul; 9():316. PubMed ID: 18644148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DanteR: an extensible R-based tool for quantitative analysis of -omics data.
    Taverner T; Karpievitch YV; Polpitiya AD; Brown JN; Dabney AR; Anderson GA; Smith RD
    Bioinformatics; 2012 Sep; 28(18):2404-6. PubMed ID: 22815360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CONSTANd: An Efficient Normalization Method for Relative Quantification in Small- and Large-Scale Omics Experiments in R BioConductor and Python.
    Van Houtven J; Hooyberghs J; Laukens K; Valkenborg D
    J Proteome Res; 2021 Apr; 20(4):2151-2156. PubMed ID: 33703904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomics and Proteomics Methods for
    Gilchrist MJ; Veenstra GJC; Cho KWY
    Cold Spring Harb Protoc; 2020 Feb; 2020(2):098350. PubMed ID: 31772075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R.
    Gregory Alvord W; Roayaei JA; Quiñones OA; Schneider KT
    Brief Bioinform; 2007 Nov; 8(6):415-31. PubMed ID: 17906332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NormalizeMets: assessing, selecting and implementing statistical methods for normalizing metabolomics data.
    De Livera AM; Olshansky G; Simpson JA; Creek DJ
    Metabolomics; 2018 Mar; 14(5):54. PubMed ID: 30830328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical data processing workflow for multi-OMICS projects.
    Kohl M; Megger DA; Trippler M; Meckel H; Ahrens M; Bracht T; Weber F; Hoffmann AC; Baba HA; Sitek B; Schlaak JF; Meyer HE; Stephan C; Eisenacher M
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt A):52-62. PubMed ID: 23501674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical comparison of cross-platform normalization methods for gene expression data.
    Rudy J; Valafar F
    BMC Bioinformatics; 2011 Dec; 12():467. PubMed ID: 22151536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QCQuan: A Web Tool for the Automated Assessment of Protein Expression and Data Quality of Labeled Mass Spectrometry Experiments.
    Van Houtven J; Agten A; Boonen K; Baggerman G; Hooyberghs J; Laukens K; Valkenborg D
    J Proteome Res; 2019 May; 18(5):2221-2227. PubMed ID: 30942071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KYSS: mass spectrometry data quality assessment for protein analysis and large-scale proteomics.
    Such-Sanmartín G; Sidoli S; Ventura-Espejo E; Jensen ON
    Biochem Biophys Res Commun; 2014 Mar; 445(4):702-7. PubMed ID: 24480439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A friendly statistics package for microarray analysis.
    Sykacek P; Furlong RA; Micklem G
    Bioinformatics; 2005 Nov; 21(21):4069-70. PubMed ID: 16188932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.