BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24767044)

  • 1. Fluorescence spectroscopy and multivariate methods for the determination of brandy adulteration with mixed wine spirit.
    Markechová D; Májek P; Sádecká J
    Food Chem; 2014 Sep; 159():193-9. PubMed ID: 24767044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study.
    Divya O; Mishra AK
    Anal Chim Acta; 2007 May; 592(1):82-90. PubMed ID: 17499074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronous fluorescence spectroscopy for determination of tahini adulteration.
    Temiz HT; Tamer U; Berkkan A; Boyaci IH
    Talanta; 2017 May; 167():557-562. PubMed ID: 28340761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of Fluorescence Spectroscopy to Detect Adulteration of Edible Oil in Extra Virgin Olive Oil (EVOO) by Applying Chemometrics.
    Ali H; Saleem M; Anser MR; Khan S; Ullah R; Bilal M
    Appl Spectrosc; 2018 Sep; 72(9):1371-1379. PubMed ID: 29712442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid discrimination between buffalo and cow milk and detection of adulteration of buffalo milk with cow milk using synchronous fluorescence spectroscopy in combination with multivariate methods.
    Durakli Velioglu S; Ercioglu E; Boyaci IH
    J Dairy Res; 2017 May; 84(2):214-219. PubMed ID: 28325170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of thermal treatment on the enhancement of detection of adulteration in extra virgin olive oils by synchronous fluorescence spectroscopy and chemometric analysis.
    Mabood F; Boqué R; Folcarelli R; Busto O; Jabeen F; Al-Harrasi A; Hussain J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():83-7. PubMed ID: 26963728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Front-face fluorescence excitation-emission matrices in combination with three-way chemometrics for the discrimination and prediction of phenolic response to vineyard agronomic practices.
    Cabrera-Bañegil M; Valdés-Sánchez E; Moreno D; Airado-Rodríguez D; Durán-Merás I
    Food Chem; 2019 Jan; 270():162-172. PubMed ID: 30174030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of geographical origin and detection of adulteration of kudzu root by fluorescence spectroscopy coupled with multi-way pattern recognition.
    Hu L; Ma S; Yin C
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():87-94. PubMed ID: 29223058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Potentiality of synchronous fluorescence technology for determination of reconstituted milk adulteration in fresh milk].
    Liu H; Han DH; Wang SP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2685-9. PubMed ID: 25739208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation-emission fluorescence as a tool to assess the presence of grape-must caramel in PDO wine vinegars.
    Ríos-Reina R; Ocaña JA; Azcarate SM; Pérez-Bernal JL; Villar-Navarro M; Callejón RM
    Food Chem; 2019 Jul; 287():115-125. PubMed ID: 30857680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations.
    Chen Q; Qi S; Li H; Han X; Ouyang Q; Zhao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():177-82. PubMed ID: 24830631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usefulness of fluorescence excitation-emission matrices in combination with PARAFAC, as fingerprints of red wines.
    Airado-Rodríguez D; Galeano-Díaz T; Durán-Merás I; Wold JP
    J Agric Food Chem; 2009 Mar; 57(5):1711-20. PubMed ID: 19215139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrofluorimetric determination of ellagic acid in brandy.
    Sádecká J; Tóthová J
    Food Chem; 2012 Dec; 135(3):893-7. PubMed ID: 22953802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil.
    Tan J; Li R; Jiang ZT; Tang SH; Wang Y; Shi M; Xiao YQ; Jia B; Lu TX; Wang H
    Food Chem; 2017 Feb; 217():274-280. PubMed ID: 27664635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of non-sugar solids content in Chinese rice wine using near infrared spectroscopy combined with an efficient characteristic variables selection algorithm.
    Ouyang Q; Zhao J; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():280-5. PubMed ID: 26143319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy.
    Anjos O; Caldeira I; Fernandes TA; Pedro SI; Vitória C; Oliveira-Alves S; Catarino S; Canas S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the performance of multiway methods for simultaneous quantification of two fluoroquinolones in urine samples by fluorescence spectroscopy and second-order calibration strategies.
    Vosough M; Eshlaghi SN; Zadmard R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():618-24. PubMed ID: 25315874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics.
    Wang T; Wu HL; Long WJ; Hu Y; Cheng L; Chen AQ; Yu RQ
    Food Chem; 2019 Sep; 293():348-357. PubMed ID: 31151622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence and chemometrics.
    Ríos-Reina R; Elcoroaristizabal S; Ocaña-González JA; García-González DL; Amigo JM; Callejón RM
    Food Chem; 2017 Sep; 230():108-116. PubMed ID: 28407890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiality of using front face fluorescence spectroscopy for quantitative analysis of cow milk adulteration in buffalo milk.
    Ullah R; Khan S; Ali H; Bilal M
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117518. PubMed ID: 31518755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.