These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24767425)

  • 1. Regulation of plant biomass utilization in Aspergillus.
    Kowalczyk JE; Benoit I; de Vries RP
    Adv Appl Microbiol; 2014; 88():31-56. PubMed ID: 24767425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass.
    Khosravi C; Benocci T; Battaglia E; Benoit I; de Vries RP
    Adv Appl Microbiol; 2015; 90():1-28. PubMed ID: 25596028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus?
    Culleton H; McKie V; de Vries RP
    Biotechnol J; 2013 Aug; 8(8):884-94. PubMed ID: 23674519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production.
    de Vries RP
    Appl Microbiol Biotechnol; 2003 Mar; 61(1):10-20. PubMed ID: 12658510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.
    de Souza WR; Maitan-Alfenas GP; de Gouvêa PF; Brown NA; Savoldi M; Battaglia E; Goldman MH; de Vries RP; Goldman GH
    Fungal Genet Biol; 2013 Nov; 60():29-45. PubMed ID: 23892063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular biology of secreted enzyme production by fungi.
    Archer DB; Peberdy JF
    Crit Rev Biotechnol; 1997; 17(4):273-306. PubMed ID: 9397531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger.
    Gruben BS; Mäkelä MR; Kowalczyk JE; Zhou M; Benoit-Gelber I; De Vries RP
    BMC Genomics; 2017 Nov; 18(1):900. PubMed ID: 29169319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulators of plant biomass degradation in ascomycetous fungi.
    Benocci T; Aguilar-Pontes MV; Zhou M; Seiboth B; de Vries RP
    Biotechnol Biofuels; 2017; 10():152. PubMed ID: 28616076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon sources and XlnR-dependent transcriptional landscape of CAZymes in the industrial fungus Talaromyces versatilis: when exception seems to be the rule.
    Llanos A; Déjean S; Neugnot-Roux V; François JM; Parrou JL
    Microb Cell Fact; 2019 Jan; 18(1):14. PubMed ID: 30691469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blocking utilization of major plant biomass polysaccharides leads Aspergillus niger towards utilization of minor components.
    Kun RS; Garrigues S; Di Falco M; Tsang A; de Vries RP
    Microb Biotechnol; 2021 Jul; 14(4):1683-1698. PubMed ID: 34114741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fungus Aspergillus niger consumes sugars in a sequential manner that is not mediated by the carbon catabolite repressor CreA.
    Mäkelä MR; Aguilar-Pontes MV; van Rossen-Uffink D; Peng M; de Vries RP
    Sci Rep; 2018 Apr; 8(1):6655. PubMed ID: 29703914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus.
    de Vries RP; Riley R; Wiebenga A; Aguilar-Osorio G; Amillis S; Uchima CA; Anderluh G; Asadollahi M; Askin M; Barry K; Battaglia E; Bayram Ö; Benocci T; Braus-Stromeyer SA; Caldana C; Cánovas D; Cerqueira GC; Chen F; Chen W; Choi C; Clum A; Dos Santos RA; Damásio AR; Diallinas G; Emri T; Fekete E; Flipphi M; Freyberg S; Gallo A; Gournas C; Habgood R; Hainaut M; Harispe ML; Henrissat B; Hildén KS; Hope R; Hossain A; Karabika E; Karaffa L; Karányi Z; Kraševec N; Kuo A; Kusch H; LaButti K; Lagendijk EL; Lapidus A; Levasseur A; Lindquist E; Lipzen A; Logrieco AF; MacCabe A; Mäkelä MR; Malavazi I; Melin P; Meyer V; Mielnichuk N; Miskei M; Molnár ÁP; Mulé G; Ngan CY; Orejas M; Orosz E; Ouedraogo JP; Overkamp KM; Park HS; Perrone G; Piumi F; Punt PJ; Ram AF; Ramón A; Rauscher S; Record E; Riaño-Pachón DM; Robert V; Röhrig J; Ruller R; Salamov A; Salih NS; Samson RA; Sándor E; Sanguinetti M; Schütze T; Sepčić K; Shelest E; Sherlock G; Sophianopoulou V; Squina FM; Sun H; Susca A; Todd RB; Tsang A; Unkles SE; van de Wiele N; van Rossen-Uffink D; Oliveira JV; Vesth TC; Visser J; Yu JH; Zhou M; Andersen MR; Archer DB; Baker SE; Benoit I; Brakhage AA; Braus GH; Fischer R; Frisvad JC; Goldman GH; Houbraken J; Oakley B; Pócsi I; Scazzocchio C; Seiboth B; vanKuyk PA; Wortman J; Dyer PS; Grigoriev IV
    Genome Biol; 2017 Feb; 18(1):28. PubMed ID: 28196534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylan decomposition by Aspergillus clavatus endo-xylanase.
    Squina FM; Mort AJ; Decker SR; Prade RA
    Protein Expr Purif; 2009 Nov; 68(1):65-71. PubMed ID: 19560539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the L-arabitol dehydrogenase encoding gene in Aspergillus tubingensis results in increased xylanase production.
    Nikolaev I; Farmer Hansen S; Madrid S; de Vries RP
    Biotechnol J; 2013 Aug; 8(8):905-11. PubMed ID: 23713061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass.
    Benoit I; Culleton H; Zhou M; DiFalco M; Aguilar-Osorio G; Battaglia E; Bouzid O; Brouwer CPJM; El-Bushari HBO; Coutinho PM; Gruben BS; Hildén KS; Houbraken J; Barboza LAJ; Levasseur A; Majoor E; Mäkelä MR; Narang HM; Trejo-Aguilar B; van den Brink J; vanKuyk PA; Wiebenga A; McKie V; McCleary B; Tsang A; Henrissat B; de Vries RP
    Biotechnol Biofuels; 2015; 8():107. PubMed ID: 26236396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner.
    Peng M; Khosravi C; Lubbers RJM; Kun RS; Aguilar Pontes MV; Battaglia E; Chen C; Dalhuijsen S; Daly P; Lipzen A; Ng V; Yan J; Wang M; Visser J; Grigoriev IV; Mäkelä MR; de Vries RP
    Cell Surf; 2021 Dec; 7():100050. PubMed ID: 33778219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides.
    de Vries RP; Visser J
    Microbiol Mol Biol Rev; 2001 Dec; 65(4):497-522, table of contents. PubMed ID: 11729262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans.
    Tamayo EN; Villanueva A; Hasper AA; de Graaff LH; Ramón D; Orejas M
    Fungal Genet Biol; 2008 Jun; 45(6):984-93. PubMed ID: 18420433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of cellulolytic enzymes by fungi Acrophialophora nainiana and Ceratocystis paradoxa using different carbon sources.
    Barros RR; Oliveira RA; Gottschalk LM; Bon EP
    Appl Biochem Biotechnol; 2010 May; 161(1-8):448-54. PubMed ID: 20174889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The overproduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of aminophosphonates by Aspergillus terreus.
    Lenartowicz P; Kafarski P; Lipok J
    Biodegradation; 2015 Feb; 26(1):65-76. PubMed ID: 25385070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.