BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 24767427)

  • 1. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion.
    Várnai A; Mäkelä MR; Djajadi DT; Rahikainen J; Hatakka A; Viikari L
    Adv Appl Microbiol; 2014; 88():103-65. PubMed ID: 24767427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate.
    Bernardes A; Pellegrini VOA; Curtolo F; Camilo CM; Mello BL; Johns MA; Scott JL; Guimaraes FEC; Polikarpov I
    Carbohydr Polym; 2019 May; 211():57-68. PubMed ID: 30824104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures.
    Valadares F; Gonçalves TA; Damasio A; Milagres AM; Squina FM; Segato F; Ferraz A
    Enzyme Microb Technol; 2019 Nov; 130():109370. PubMed ID: 31421724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate-binding modules facilitate the enzymatic hydrolysis of lignocellulosic biomass: Releasing reducing sugars and dissociative lignin available for producing biofuels and chemicals.
    Shi Q; Abdel-Hamid AM; Sun Z; Cheng Y; Tu T; Cann I; Yao B; Zhu W
    Biotechnol Adv; 2023; 65():108126. PubMed ID: 36921877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs.
    Várnai A; Siika-Aho M; Viikari L
    Biotechnol Biofuels; 2013 Feb; 6(1):30. PubMed ID: 23442543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipopeptide produced from
    Liu J; Zhu N; Yang J; Yang Y; Wang R; Liu L; Yuan H
    Biotechnol Biofuels; 2017; 10():301. PubMed ID: 29255484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering cellulases for conversion of lignocellulosic biomass.
    Chaudhari YB; Várnai A; Sørlie M; Horn SJ; Eijsink VGH
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 36892404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis.
    Monrroy M; Ortega I; Ramírez M; Baeza J; Freer J
    Enzyme Microb Technol; 2011 Oct; 49(5):472-7. PubMed ID: 22112620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding modules alter the activity of chimeric cellulases: Effects of biomass pretreatment and enzyme source.
    Kim TW; Chokhawala HA; Nadler DC; Blanch HW; Clark DS
    Biotechnol Bioeng; 2010 Nov; 107(4):601-11. PubMed ID: 20623472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III.
    Chundawat SPS; Nemmaru B; Hackl M; Brady SK; Hilton MA; Johnson MM; Chang S; Lang MJ; Huh H; Lee SH; Yarbrough JM; López CA; Gnanakaran S
    J Biol Chem; 2021; 296():100431. PubMed ID: 33610545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ imaging of single carbohydrate-binding modules on cellulose microfibrils.
    Dagel DJ; Liu YS; Zhong L; Luo Y; Himmel ME; Xu Q; Zeng Y; Ding SY; Smith S
    J Phys Chem B; 2011 Feb; 115(4):635-41. PubMed ID: 21162585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented display of cello-oligosaccharides for pull-down binding assays to distinguish binding preferences of glycan binding proteins.
    Hackl M; Power Z; Chundawat SPS
    Carbohydr Res; 2023 Dec; 534():108943. PubMed ID: 37783054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content.
    Martín-Sampedro R; Rahikainen JL; Johansson LS; Marjamaa K; Laine J; Kruus K; Rojas OJ
    Biomacromolecules; 2013 Apr; 14(4):1231-9. PubMed ID: 23484974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay.
    Hori C; Gaskell J; Igarashi K; Samejima M; Hibbett D; Henrissat B; Cullen D
    Mycologia; 2013; 105(6):1412-27. PubMed ID: 23935027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omic Analyses of Extensively Decayed Pinus contorta Reveal Expression of a Diverse Array of Lignocellulose-Degrading Enzymes.
    Hori C; Gaskell J; Cullen D; Sabat G; Stewart PE; Lail K; Peng Y; Barry K; Grigoriev IV; Kohler A; Fauchery L; Martin F; Zeiner CA; Bhatnagar JM
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity.
    Hildén L; Johansson G
    Biotechnol Lett; 2004 Nov; 26(22):1683-93. PubMed ID: 15604820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of lignocellulolytic enzymes from white-rot fungi.
    Manavalan T; Manavalan A; Heese K
    Curr Microbiol; 2015 Apr; 70(4):485-98. PubMed ID: 25487116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The laccase-catalyzed modification of lignin for enzymatic hydrolysis.
    Moilanen U; Kellock M; Galkin S; Viikari L
    Enzyme Microb Technol; 2011 Dec; 49(6-7):492-8. PubMed ID: 22142723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass.
    Shang Y; Su R; Huang R; Yang Y; Qi W; Li Q; He Z
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5765-74. PubMed ID: 24752845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.