These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24767502)

  • 1. YbCl₃ electrode in alkaline aqueous electrolyte with high pseudocapacitance.
    Chen K; Xue D
    J Colloid Interface Sci; 2014 Jun; 424():84-9. PubMed ID: 24767502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of electroactive colloids via in situ coprecipitation under electric field: erbium chloride alkaline aqueous pseudocapacitor.
    Chen K; Xue D
    J Colloid Interface Sci; 2014 Sep; 430():265-71. PubMed ID: 24973700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode.
    Chen K; Xue D
    J Colloid Interface Sci; 2014 Feb; 416():172-6. PubMed ID: 24370418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A binary A(x)B(1-x) ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation.
    Chen K; Yin S; Xue D
    Nanoscale; 2015 Jan; 7(3):1161-6. PubMed ID: 25486527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A colloidal pseudocapacitor: direct use of Fe(NO₃)₃ in electrode can lead to a high performance alkaline supercapacitor system.
    Chen X; Chen K; Wang H; Xue D
    J Colloid Interface Sci; 2015 Apr; 444():49-57. PubMed ID: 25585287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ electrochemical activation of Ni-based colloids from an NiCl
    Chen K; Xue D
    Nanoscale; 2016 Oct; 8(39):17090-17095. PubMed ID: 27722673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors.
    Ji X; Xu K; Chen C; Zhang B; Ruan Y; Liu J; Miao L; Jiang J
    Phys Chem Chem Phys; 2016 Feb; 18(6):4460-7. PubMed ID: 26790481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-active electrolyte for supercapacitor application.
    Frackowiak E; Meller M; Menzel J; Gastol D; Fic K
    Faraday Discuss; 2014; 172():179-98. PubMed ID: 25426821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Solid-State Stretchable Pseudocapacitors Enabled by Carbon Nanotube Film-Capped Sandwich-like Electrodes.
    Gu T; Wei B
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25243-50. PubMed ID: 27589207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-electrodes for selective electrochemical separations.
    Su X; Hatton TA
    Adv Colloid Interface Sci; 2017 Jun; 244():6-20. PubMed ID: 27712721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors.
    Qiu Y; Zhao Y; Yang X; Li W; Wei Z; Xiao J; Leung SF; Lin Q; Wu H; Zhang Y; Fan Z; Yang S
    Nanoscale; 2014 Apr; 6(7):3626-31. PubMed ID: 24562413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interconnected network of MnO2 nanowires with a "cocoonlike" morphology: redox couple-mediated performance enhancement in symmetric aqueous supercapacitor.
    Maiti S; Pramanik A; Mahanty S
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10754-62. PubMed ID: 24930698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anion-Based Pseudocapacitance of the Perovskite Library La
    Alexander CT; Mefford JT; Saunders J; Forslund RP; Johnston KP; Stevenson KJ
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5084-5094. PubMed ID: 30640433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of strontium doping on the electrochemical pseudocapacitance of Y
    Singh AN; Nigam KG; Mondal R; Kushwaha V; Gupta A; Rath C; Singh P
    Phys Chem Chem Phys; 2022 Dec; 25(1):326-340. PubMed ID: 36477306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature.
    Zhang M; Xu T; Wang D; Yao T; Xu Z; Liu Q; Shen L; Yu Y
    Adv Mater; 2023 Jun; 35(23):e2209963. PubMed ID: 36626913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal Supercapattery: Redox Ions in Electrode and Electrolyte.
    Chen K; Xue D
    Chem Rec; 2018 Mar; 18(3):282-292. PubMed ID: 28892248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molybdenum Nitride Nanocrystals Anchored on Phosphorus-Incorporated Carbon Fabric as a Negative Electrode for High-Performance Asymmetric Pseudocapacitor.
    Dubal DP; Abdel-Azeim S; Chodankar NR; Han YK
    iScience; 2019 Jun; 16():50-62. PubMed ID: 31153041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.