These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24768166)

  • 1. Development of caged non-hydrolyzable phosphoamino acids and application to photo-control of binding affinity of phosphopeptide mimetic to phosphopeptide-recognizing protein.
    Ebisuno K; Denda M; Ogura K; Inokuma T; Shigenaga A; Otaka A
    Bioorg Med Chem; 2014 Jun; 22(11):2984-91. PubMed ID: 24768166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential activation and deactivation of protein function using spectrally differentiated caged phosphoamino acids.
    Goguen BN; Aemissegger A; Imperiali B
    J Am Chem Soc; 2011 Jul; 133(29):11038-41. PubMed ID: 21692531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the coupling efficiency of phosphorylated amino acids for SPOT synthesis.
    Tapia V; Ay B; Triebus J; Wolter E; Boisguerin P; Volkmer R
    J Pept Sci; 2008 Dec; 14(12):1309-14. PubMed ID: 18816512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic Phosphopeptides to Rationalize the Role of Phosphoamino Acids in Uranyl Binding to Biological Targets.
    Starck M; Laporte FA; Oros S; Sisommay N; Gathu V; Solari PL; Creff G; Roques J; Den Auwer C; Lebrun C; Delangle P
    Chemistry; 2017 Apr; 23(22):5281-5290. PubMed ID: 28164389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-phase synthesis of phosphopeptides.
    Højlys-Larsen KB; Jensen KJ
    Methods Mol Biol; 2013; 1047():191-9. PubMed ID: 23943487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of fluorine-containing bioisosteres corresponding to phosphoamino acids and dipeptide units.
    Otaka A; Mitsuyama E; Watanabe J; Watanabe H; Fujii N
    Biopolymers; 2004; 76(2):140-9. PubMed ID: 15054894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general preparation of protected phosphoamino acids.
    Petrillo DE; Mowrey DR; Allwein SP; Bakale RP
    Org Lett; 2012 Mar; 14(5):1206-9. PubMed ID: 22356680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent caged phosphoserine peptides as probes to investigate phosphorylation-dependent protein associations.
    Vázquez ME; Nitz M; Stehn J; Yaffe MB; Imperiali B
    J Am Chem Soc; 2003 Aug; 125(34):10150-1. PubMed ID: 12926919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphospecific proteolysis for mapping sites of protein phosphorylation.
    Knight ZA; Schilling B; Row RH; Kenski DM; Gibson BW; Shokat KM
    Nat Biotechnol; 2003 Sep; 21(9):1047-54. PubMed ID: 12923550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-phase synthesis of caged peptides using tyrosine modified with a photocleavable protecting group: application to the synthesis of caged neuropeptide Y.
    Tatsu Y; Shigeri Y; Sogabe S; Yumoto N; Yoshikawa S
    Biochem Biophys Res Commun; 1996 Oct; 227(3):688-93. PubMed ID: 8885995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caged phosphopeptides reveal a temporal role for 14-3-3 in G1 arrest and S-phase checkpoint function.
    Nguyen A; Rothman DM; Stehn J; Imperiali B; Yaffe MB
    Nat Biotechnol; 2004 Aug; 22(8):993-1000. PubMed ID: 15273693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet photodissociation at 266 nm of phosphorylated peptide cations.
    Park S; Ahn WK; Lee S; Han SY; Rhee BK; Oh HB
    Rapid Commun Mass Spectrom; 2009 Dec; 23(23):3609-20. PubMed ID: 19890956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caged phospho-amino acid building blocks for solid-phase peptide synthesis.
    Rothman DM; Vazquez ME; Vogel EM; Imperiali B
    J Org Chem; 2003 Aug; 68(17):6795-8. PubMed ID: 12919051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why phosphoproteomics is still a challenge.
    Solari FA; Dell'Aica M; Sickmann A; Zahedi RP
    Mol Biosyst; 2015 Jun; 11(6):1487-93. PubMed ID: 25800119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of phosphonamidate- and phosphonate-linked phosphonopeptides.
    Fu N; Zhang Q; Duan L; Xu J
    J Pept Sci; 2006 Apr; 12(4):303-9. PubMed ID: 16245363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions.
    Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A manual sequence method of peptides and phosphopeptides using 4-(1'-cyanoisoindolyl)phenylisothiocyanate.
    Shibata T; Wainaina MN; Miyoshi T; Kabashima T; Kai M
    J Chromatogr A; 2011 Jun; 1218(24):3757-62. PubMed ID: 21531425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate group-driven fragmentation of multiply charged phosphopeptide anions. Improved recognition of peptides phosphorylated at serine, threonine, or tyrosine by negative ion electrospray tandem mass spectrometry.
    Edelson-Averbukh M; Pipkorn R; Lehmann WD
    Anal Chem; 2006 Feb; 78(4):1249-56. PubMed ID: 16478119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can collision-induced negative-ion fragmentations of [M-H](-) anions be used to identify phosphorylation sites in peptides?
    Tran TT; Wang T; Hack S; Hoffmann P; Bowie JH
    Rapid Commun Mass Spectrom; 2011 Dec; 25(23):3537-48. PubMed ID: 22095502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphopeptide enrichment using microscale titanium dioxide solid phase extraction.
    Yu YQ; Fournier J; Gilar M; Gebler JC
    J Sep Sci; 2009 Apr; 32(8):1189-99. PubMed ID: 19301321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.