These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24768563)

  • 21. Dynamic finite element analyses to compare the influences of customised total talar replacement and total ankle arthroplasty on foot biomechanics during gait.
    Chen TL; Wang Y; Peng Y; Zhang G; Hong TT; Zhang M
    J Orthop Translat; 2023 Jan; 38():32-43. PubMed ID: 36313976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Forefoot plantar pressure changes of the first tarsometatarsal joint fracture-dislocation fixation by different internal fixations].
    Yu X; Pang QJ
    Zhongguo Gu Shang; 2015 Feb; 28(2):157-61. PubMed ID: 25924500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects on the metatarsophalangeal joint after simulated first tarsometatarsal joint arthrodesis.
    Perez HR; Reber LK; Christensen JC
    J Foot Ankle Surg; 2007; 46(4):242-7. PubMed ID: 17586436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An in vitro and finite element study of load redistribution in the midfoot.
    Niu W; Tang T; Zhang M; Jiang C; Fan Y
    Sci China Life Sci; 2014 Dec; 57(12):1191-6. PubMed ID: 25249199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.
    Chen WM; Lee SJ; Lee PVS
    J Mech Behav Biomed Mater; 2014 Dec; 40():264-274. PubMed ID: 25255421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative evaluation of the vertical mobility of the first tarsometatarsal joint during stance phase of gait.
    Maeda N; Ikuta Y; Tashiro T; Arima S; Morikawa M; Kaneda K; Ishihara H; Brand A; Nakasa T; Adachi N; Urabe Y
    Sci Rep; 2022 Jun; 12(1):9246. PubMed ID: 35655091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise - A 3D finite element analysis.
    Chen WM; Park J; Park SB; Shim VP; Lee T
    J Biomech; 2012 Jun; 45(10):1783-9. PubMed ID: 22578743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical simulation of high-heeled shoe donning and walking.
    Yu J; Cheung JT; Wong DW; Cong Y; Zhang M
    J Biomech; 2013 Aug; 46(12):2067-74. PubMed ID: 23855974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of Virtual Chinese Human after plantar ligamentous structure failures.
    Wu L
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):221-9. PubMed ID: 17118500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of internal stress concentrations in plantar soft-tissue--A preliminary three-dimensional finite element analysis.
    Chen WM; Lee T; Lee PV; Lee JW; Lee SJ
    Med Eng Phys; 2010 May; 32(4):324-31. PubMed ID: 20117957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element analysis of plantar fascia under stretch-the relative contribution of windlass mechanism and Achilles tendon force.
    Cheng HY; Lin CL; Wang HW; Chou SW
    J Biomech; 2008; 41(9):1937-44. PubMed ID: 18502428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-linear finite element model to assess the effect of tendon forces on the foot-ankle complex.
    Morales-Orcajo E; Souza TR; Bayod J; Barbosa de Las Casas E
    Med Eng Phys; 2017 Nov; 49():71-78. PubMed ID: 28807512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Associations between changes in loading pattern, deformity, and internal stresses at the foot with hammer toe during walking; a finite element approach.
    Moayedi M; Arshi AR; Salehi M; Akrami M; Naemi R
    Comput Biol Med; 2021 Aug; 135():104598. PubMed ID: 34346320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.
    Guiotto A; Sawacha Z; Guarneri G; Avogaro A; Cobelli C
    J Biomech; 2014 Sep; 47(12):3064-71. PubMed ID: 25113808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cartilage Stiffness Effect on Foot Biomechanics of Chinese Bound Foot: A Finite Element Analysis.
    Zhang Y; Awrejcewicz J; Baker JS; Gu Y
    Front Physiol; 2018; 9():1434. PubMed ID: 30364272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanics of first ray hypermobility: an investigation on joint force during walking using finite element analysis.
    Wong DW; Zhang M; Yu J; Leung AK
    Med Eng Phys; 2014 Nov; 36(11):1388-93. PubMed ID: 24726375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element model-based evaluation of tissue stress variations to fabricate corrective orthosis in feet with neutral subtalar joint.
    Paul S; Vijayakumar R; Mathew L; Sivarasu S
    Prosthet Orthot Int; 2017 Apr; 41(2):157-163. PubMed ID: 26979816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlates between kinematics and baropodometric measurements for an integrated in-vivo assessment of the segmental foot function in gait.
    Giacomozzi C; Leardini A; Caravaggi P
    J Biomech; 2014 Aug; 47(11):2654-9. PubMed ID: 24935170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.