These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24768574)

  • 1. The use of fMRI to detect neural responses to cognitive interference and planning: evidence for a contribution of task related changes in heart rate?
    van 't Ent D; den Braber A; Rotgans E; de Geus EJ; de Munck JC
    J Neurosci Methods; 2014 May; 229():97-107. PubMed ID: 24768574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the brain's resting state based on alpha band power, heart rate and fMRI.
    de Munck JC; Gonçalves SI; Faes TJ; Kuijer JP; Pouwels PJ; Heethaar RM; Lopes da Silva FH
    Neuroimage; 2008 Aug; 42(1):112-21. PubMed ID: 18539049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An fMRI study of the functional mechanisms of Stroop/reverse-Stroop effects.
    Song Y; Hakoda Y
    Behav Brain Res; 2015 Sep; 290():187-96. PubMed ID: 25952963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Executive dysfunction in early stages of Huntington's disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study.
    Peinemann A; Schuller S; Pohl C; Jahn T; Weindl A; Kassubek J
    J Neurol Sci; 2005 Dec; 239(1):11-9. PubMed ID: 16185716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI.
    Liu X; Banich MT; Jacobson BL; Tanabe JL
    Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practice on conflict tasks promotes executive function of working memory in the elderly.
    Osaka M; Yaoi K; Otsuka Y; Katsuhara M; Osaka N
    Behav Brain Res; 2012 Jul; 233(1):90-8. PubMed ID: 22579495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fNIRS-based investigation of the Stroop task after TBI.
    Plenger P; Krishnan K; Cloud M; Bosworth C; Qualls D; Marquez de la Plata C
    Brain Imaging Behav; 2016 Jun; 10(2):357-66. PubMed ID: 26058665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cognitive interference is associated with neuronal marker N-acetyl aspartate in the anterior cingulate cortex: an in vivo (1)H-MRS study of the Stroop Color-Word task.
    Grachev ID; Kumar R; Ramachandran TS; Szeverenyi NM
    Mol Psychiatry; 2001 Sep; 6(5):496, 529-39. PubMed ID: 11526467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.
    Erdoğan SB; Yücel MA; Akın A
    Neuroimage; 2014 Feb; 87():490-504. PubMed ID: 24148922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How negative affect influences neural control processes underlying the resolution of cognitive interference: an event-related fMRI study.
    Melcher T; Born C; Gruber O
    Neurosci Res; 2011 Aug; 70(4):415-27. PubMed ID: 21620907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Word and position interference in stroop tasks: a behavioral and fMRI study.
    Zoccatelli G; Beltramello A; Alessandrini F; Pizzini FB; Tassinari G
    Exp Brain Res; 2010 Nov; 207(1-2):139-47. PubMed ID: 20924569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of selective attention: fMRI study of face-word Stroop task performance.
    Vivekananth S; Sood SK; Senthil Kumaran S; Srivastava A
    Indian J Physiol Pharmacol; 2013; 57(4):354-60. PubMed ID: 24968573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The separation of processing stages in a lexical interference fMRI-paradigm.
    Abel S; Dressel K; Bitzer R; Kümmerer D; Mader I; Weiller C; Huber W
    Neuroimage; 2009 Feb; 44(3):1113-24. PubMed ID: 19015036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI.
    Mildner T; Zysset S; Trampel R; Driesel W; Möller HE
    Neuroimage; 2005 Oct; 27(4):919-26. PubMed ID: 15978840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dorsal striatum mediates cognitive control, not cognitive effort per se, in decision-making: An event-related fMRI study.
    Robertson BD; Hiebert NM; Seergobin KN; Owen AM; MacDonald PA
    Neuroimage; 2015 Jul; 114():170-84. PubMed ID: 25862263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated slow fluctuations in respiration, EEG, and BOLD fMRI.
    Yuan H; Zotev V; Phillips R; Bodurka J
    Neuroimage; 2013 Oct; 79():81-93. PubMed ID: 23631982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stroop performance in normal control subjects: an fMRI study.
    Gruber SA; Rogowska J; Holcomb P; Soraci S; Yurgelun-Todd D
    Neuroimage; 2002 Jun; 16(2):349-60. PubMed ID: 12030821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test-retest reliability of an fMRI paradigm for studies of cardiovascular reactivity.
    Sheu LK; Jennings JR; Gianaros PJ
    Psychophysiology; 2012 Jul; 49(7):873-84. PubMed ID: 22594784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery.
    Plichta MM; Schwarz AJ; Grimm O; Morgen K; Mier D; Haddad L; Gerdes AB; Sauer C; Tost H; Esslinger C; Colman P; Wilson F; Kirsch P; Meyer-Lindenberg A
    Neuroimage; 2012 Apr; 60(3):1746-58. PubMed ID: 22330316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.