These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 24768575)
1. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users. Rutkowski TM; Mori H J Neurosci Methods; 2015 Apr; 244():45-51. PubMed ID: 24768575 [TBL] [Abstract][Full Text] [Related]
2. A novel hybrid auditory BCI paradigm combining ASSR and P300. Kaongoen N; Jo S J Neurosci Methods; 2017 Mar; 279():44-51. PubMed ID: 28109832 [TBL] [Abstract][Full Text] [Related]
3. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses. Baek HJ; Kim HS; Heo J; Lim YG; Park KS J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913 [TBL] [Abstract][Full Text] [Related]
4. Developing a Novel Tactile P300 Brain-Computer Interface With a Cheeks-Stim Paradigm. Jin J; Chen Z; Xu R; Miao Y; Wang X; Jung TP IEEE Trans Biomed Eng; 2020 Sep; 67(9):2585-2593. PubMed ID: 31940515 [TBL] [Abstract][Full Text] [Related]
5. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI). Lim JH; Hwang HJ; Han CH; Jung KY; Im CH J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484 [TBL] [Abstract][Full Text] [Related]
6. An Auditory-Tactile Visual Saccade-Independent P300 Brain-Computer Interface. Yin E; Zeyl T; Saab R; Hu D; Zhou Z; Chau T Int J Neural Syst; 2016 Feb; 26(1):1650001. PubMed ID: 26678249 [TBL] [Abstract][Full Text] [Related]
7. A vibrotactile p300-based brain-computer interface for consciousness detection and communication. Lugo ZR; Rodriguez J; Lechner A; Ortner R; Gantner IS; Laureys S; Noirhomme Q; Guger C Clin EEG Neurosci; 2014 Jan; 45(1):14-21. PubMed ID: 24415400 [TBL] [Abstract][Full Text] [Related]
8. A new hybrid BCI paradigm based on P300 and SSVEP. Wang M; Daly I; Allison BZ; Jin J; Zhang Y; Chen L; Wang X J Neurosci Methods; 2015 Apr; 244():16-25. PubMed ID: 24997343 [TBL] [Abstract][Full Text] [Related]
9. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery. Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225 [TBL] [Abstract][Full Text] [Related]
10. Identifying potential training factors in a vibrotactile P300-BCI. Eidel M; Kübler A Sci Rep; 2022 Aug; 12(1):14006. PubMed ID: 35978082 [TBL] [Abstract][Full Text] [Related]
11. The Development of a Multicommand Tactile Event-Related Potential-Based Brain-Computer Interface Utilizing a Low-Cost Wearable Vibrotactile Stimulator. Borirakarawin M; Siribunyaphat N; Aung ST; Punsawad Y Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409418 [TBL] [Abstract][Full Text] [Related]
12. A survey of the dummy face and human face stimuli used in BCI paradigm. Chen L; Jin J; Zhang Y; Wang X; Cichocki A J Neurosci Methods; 2015 Jan; 239():18-27. PubMed ID: 25314905 [TBL] [Abstract][Full Text] [Related]
13. Recording the tactile P300 with the cEEGrid for potential use in a brain-computer interface. Eidel M; Pfeiffer M; Ziebell P; Kübler A Front Hum Neurosci; 2024; 18():1371631. PubMed ID: 38957693 [TBL] [Abstract][Full Text] [Related]
14. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments. Halder S; Käthner I; Kübler A Clin Neurophysiol; 2016 Feb; 127(2):1288-1296. PubMed ID: 26350406 [TBL] [Abstract][Full Text] [Related]