BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24768619)

  • 21. Regenerative endodontics as a tissue engineering approach: past, current and future.
    Malhotra N; Mala K
    Aust Endod J; 2012 Dec; 38(3):137-48. PubMed ID: 23211074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical strain using 2D and 3D bioreactors induces osteogenesis: implications for bone tissue engineering.
    van Griensven M; Diederichs S; Roeker S; Boehm S; Peterbauer A; Wolbank S; Riechers D; Stahl F; Kasper C
    Adv Biochem Eng Biotechnol; 2009; 112():95-123. PubMed ID: 19290499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.
    Santo VE; Gomes ME; Mano JF; Reis RL
    Nanomedicine (Lond); 2012 Jul; 7(7):1045-66. PubMed ID: 22846091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Articular cartilage tissue engineering: today's research, tomorrow's practice?
    Getgood A; Brooks R; Fortier L; Rushton N
    J Bone Joint Surg Br; 2009 May; 91(5):565-76. PubMed ID: 19407287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local and targeted drug delivery for bone regeneration.
    Newman MR; Benoit DS
    Curr Opin Biotechnol; 2016 Aug; 40():125-132. PubMed ID: 27064433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymeric composites containing carbon nanotubes for bone tissue engineering.
    Sahithi K; Swetha M; Ramasamy K; Srinivasan N; Selvamurugan N
    Int J Biol Macromol; 2010 Apr; 46(3):281-3. PubMed ID: 20093139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Tissue engineering of cartilage and bone : growth factors and signaling molecules].
    Brochhausen C; Lehmann M; Zehbe R; Watzer B; Grad S; Meurer A; Kirkpatrick CJ
    Orthopade; 2009 Nov; 38(11):1053-62. PubMed ID: 19851750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological and biophysical principles in extracorporal bone tissue engineering. Part II.
    Wiesmann HP; Joos U; Meyer U
    Int J Oral Maxillofac Surg; 2004 Sep; 33(6):523-30. PubMed ID: 15308249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled release scaffolds for bone tissue engineering.
    Cartmell S
    J Pharm Sci; 2009 Feb; 98(2):430-41. PubMed ID: 18481312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.
    Freeman FE; McNamara LM
    Tissue Eng Part B Rev; 2017 Apr; 23(2):128-141. PubMed ID: 27758156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone tissue engineering scaffolds of today and tomorrow.
    Panetta NJ; Gupta DM; Longaker MT
    J Craniofac Surg; 2009 Sep; 20(5):1531-2. PubMed ID: 19816291
    [No Abstract]   [Full Text] [Related]  

  • 33. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaffolds based bone tissue engineering: the role of chitosan.
    Costa-Pinto AR; Reis RL; Neves NM
    Tissue Eng Part B Rev; 2011 Oct; 17(5):331-47. PubMed ID: 21810029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone morphogenetic proteins and tissue engineering: future directions.
    Calori GM; Donati D; Di Bella C; Tagliabue L
    Injury; 2009 Dec; 40 Suppl 3():S67-76. PubMed ID: 20082795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of surgical innovation on tissue repair in the surgical patient.
    Tevlin R; Atashroo D; Duscher D; Mc Ardle A; Gurtner GC; Wan DC; Longaker MT
    Br J Surg; 2015 Jan; 102(2):e41-55. PubMed ID: 25627135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano- to macroscale remodeling of functional tissue-engineered bone.
    Woodruff MA; Lange C; Chen F; Fratzl P; Hutmacher DW
    Adv Healthc Mater; 2013 Apr; 2(4):546-51. PubMed ID: 23184872
    [No Abstract]   [Full Text] [Related]  

  • 39. Tissue engineering and regenerative medicine: past, present, and future.
    Salgado AJ; Oliveira JM; Martins A; Teixeira FG; Silva NA; Neves NM; Sousa N; Reis RL
    Int Rev Neurobiol; 2013; 108():1-33. PubMed ID: 24083429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration.
    Tang D; Tare RS; Yang LY; Williams DF; Ou KL; Oreffo RO
    Biomaterials; 2016 Mar; 83():363-82. PubMed ID: 26803405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.