These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 24768703)

  • 1. Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze-thaw.
    Asadishad B; Olsson AL; Dusane DH; Ghoshal S; Tufenkji N
    Water Res; 2014 Jul; 58():239-47. PubMed ID: 24768703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cold climate and freeze-thaw on the survival, transport, and virulence of Yersinia enterocolitica.
    Asadishad B; Ghoshal S; Tufenkji N
    Environ Sci Technol; 2013 Dec; 47(24):14169-77. PubMed ID: 24283700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.
    Hsueh YH; Ke WJ; Hsieh CT; Lin KS; Tzou DY; Chiang CL
    PLoS One; 2015; 10(6):e0128457. PubMed ID: 26039692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural freeze-thaw cycles may increase the risk associated with
    Rocard JM; Asadishad B; Samonte PRV; Ghoshal S; Tufenkji N
    Water Res X; 2018 Dec; 1():100005. PubMed ID: 31194033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-thaw cycles induce diverse bacteria release behaviors from quartz sand columns with different water saturations.
    He L; Li M; Wu D; Guo J; Zhang M; Tong M
    Water Res; 2022 Aug; 221():118683. PubMed ID: 35716413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to Freeze-Thaw Conditions Increases Virulence of Pseudomonas aeruginosa to Drosophila melanogaster.
    Hakimzadeh A; Okshevsky M; Maisuria V; Déziel E; Tufenkji N
    Environ Sci Technol; 2018 Dec; 52(24):14180-14186. PubMed ID: 30444353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis.
    Ito M; Hicks DB; Henkin TM; Guffanti AA; Powers BD; Zvi L; Uematsu K; Krulwich TA
    Mol Microbiol; 2004 Aug; 53(4):1035-49. PubMed ID: 15306009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of repeated freeze-thaw on inhibition of Bacillus subtilis strain St-zn-34 to Alternaria alternate].
    Lang J; Shi M; Ran L
    Wei Sheng Wu Xue Bao; 2016 Oct; 56(10):1616-25. PubMed ID: 29741350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens.
    Powers MJ; Sanabria-Valentín E; Bowers AA; Shank EA
    J Bacteriol; 2015 Jul; 197(13):2129-2138. PubMed ID: 25825426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms.
    He JZ; Wang DJ; Fang H; Fu QL; Zhou DM
    Chemosphere; 2017 Feb; 169():1-8. PubMed ID: 27855326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilm-defective mutants of Bacillus subtilis.
    Chagneau C; Saier MH
    J Mol Microbiol Biotechnol; 2004; 8(3):177-88. PubMed ID: 16088219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of selected bacterial pathogens in agricultural soil and quartz sand.
    Schinner T; Letzner A; Liedtke S; Castro FD; Eydelnant IA; Tufenkji N
    Water Res; 2010 Feb; 44(4):1182-92. PubMed ID: 19084252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial determinants of the social behavior of Bacillus subtilis.
    Romero D
    Res Microbiol; 2013 Sep; 164(7):788-98. PubMed ID: 23791621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial attachment and viscoelasticity: physicochemical and motility effects analyzed using quartz crystal microbalance with dissipation (QCM-D).
    Gutman J; Walker SL; Freger V; Herzberg M
    Environ Sci Technol; 2013 Jan; 47(1):398-404. PubMed ID: 23186151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA; Arboleda LC; Spina JS; McLoon AL
    BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of (bi)carbonate on bacterial interaction with quartz and metal oxide-coated surfaces.
    Park SJ; Kim SB
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):57-62. PubMed ID: 19896343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of biofilm on the transport and deposition behaviors of nano- and micro-plastic particles in quartz sand.
    He L; Rong H; Wu D; Li M; Wang C; Tong M
    Water Res; 2020 Jul; 178():115808. PubMed ID: 32371288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species.
    Morikawa M
    J Biosci Bioeng; 2006 Jan; 101(1):1-8. PubMed ID: 16503283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular clutch disables flagella in the Bacillus subtilis biofilm.
    Blair KM; Turner L; Winkelman JT; Berg HC; Kearns DB
    Science; 2008 Jun; 320(5883):1636-8. PubMed ID: 18566286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Division of labour during Bacillus subtilis biofilm formation.
    Kearns DB
    Mol Microbiol; 2008 Jan; 67(2):229-31. PubMed ID: 18086186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.