BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24768722)

  • 1. Identification and expression of microRNA in the brain of hibernating bats, Myotis lucifugus.
    Biggar KK; Storey KB
    Gene; 2014 Jul; 544(1):67-74. PubMed ID: 24768722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of mature microRNAs involved in muscle maintenance of hibernating little brown bats, Myotis lucifugus: a model of muscle atrophy resistance.
    Kornfeld SF; Biggar KK; Storey KB
    Genomics Proteomics Bioinformatics; 2012 Oct; 10(5):295-301. PubMed ID: 23200139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor.
    Morin P; Dubuc A; Storey KB
    Biochim Biophys Acta; 2008 Oct; 1779(10):628-33. PubMed ID: 18723136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Down but Not Out: The Role of MicroRNAs in Hibernating Bats.
    Yuan L; Geiser F; Lin B; Sun H; Chen J; Zhang S
    PLoS One; 2015; 10(8):e0135064. PubMed ID: 26244645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of selected mitochondrial genes in hibernating little brown bats, Myotis lucifugus.
    Eddy SF; Morin P; Storey KB
    J Exp Zool A Comp Exp Biol; 2006 Aug; 305(8):620-30. PubMed ID: 16721807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIF-1α regulation in mammalian hibernators: role of non-coding RNA in HIF-1α control during torpor in ground squirrels and bats.
    Maistrovski Y; Biggar KK; Storey KB
    J Comp Physiol B; 2012 Aug; 182(6):849-59. PubMed ID: 22526261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels.
    Wu CW; Biggar KK; Storey KB
    Genomics Proteomics Bioinformatics; 2014 Dec; 12(6):284-91. PubMed ID: 25526980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression and functional constraint of PRL-2 in hibernating bat.
    Yuan L; Chen J; Lin B; Zhang J; Zhang S
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Dec; 148(4):375-81. PubMed ID: 17683965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p38 MAPK regulation of transcription factor targets in muscle and heart of the hibernating bat, Myotis lucifugus.
    Eddy SF; Storey KB
    Cell Biochem Funct; 2007; 25(6):759-65. PubMed ID: 17487931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes.
    Lei M; Dong D; Mu S; Pan YH; Zhang S
    PLoS One; 2014; 9(9):e107746. PubMed ID: 25251558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conspecific disturbance contributes to altered hibernation patterns in bats with white-nose syndrome.
    Turner JM; Warnecke L; Wilcox A; Baloun D; Bollinger TK; Misra V; Willis CK
    Physiol Behav; 2015 Mar; 140():71-8. PubMed ID: 25484358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of the FK506 binding protein 1B to hibernation in bats.
    Liu D; Zheng S; Zheng G; Lv Q; Shen B; Yuan X; Pan YH
    Cryobiology; 2018 Aug; 83():1-8. PubMed ID: 30056853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of hibernation-related genes in the brain of Rhinolophus ferrumequinum during hibernation.
    Chen J; Yuan L; Sun M; Zhang L; Zhang S
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Feb; 149(2):388-93. PubMed ID: 18055242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Up-regulation of a non-kinase activity isoform of Ca(2+)/calmodulin-dependent protein kinase kinase beta1 (CaMKKbeta1) in hibernating bat brain.
    Yuan L; Chen J; Lin B; Liang B; Zhang S; Wu D
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Mar; 146(3):438-44. PubMed ID: 17258919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat, Myotis myotis.
    Huang Z; Jebb D; Teeling EC
    BMC Genomics; 2016 Nov; 17(1):906. PubMed ID: 27832764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasting, fasting and freezing: energetic effects of meal size and temperature on torpor expression by little brown bats Myotis lucifugus.
    Matheson AL; Campbell KL; Willis CK
    J Exp Biol; 2010 Jun; 213(Pt 12):2165-73. PubMed ID: 20511531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy availability influences microclimate selection of hibernating bats.
    Boyles JG; Dunbar MB; Storm JJ; Brack V
    J Exp Biol; 2007 Dec; 210(Pt 24):4345-50. PubMed ID: 18055623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis.
    Yin Q; Zhang Y; Dong D; Lei M; Zhang S; Liao CC; Pan YH
    Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1004-1019. PubMed ID: 28473298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Activation of Prosurvival Pathways in
    Saleem R; Al-Attar R; Storey KB
    Physiol Biochem Zool; 2021; 94(3):180-187. PubMed ID: 33835909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression and adaptive evolution of ZBED1 in the hibernating greater horseshoe bat (Rhinolophus ferrumequinum).
    Xiao Y; Wu Y; Sun K; Wang H; Jiang T; Lin A; Huang X; Yue X; Shi L; Feng J
    J Exp Biol; 2016 Mar; 219(Pt 6):834-43. PubMed ID: 26787476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.