These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24768722)

  • 21. Huddling reduces evaporative water loss in torpid Natterer's bats, Myotis nattereri.
    Boratyński JS; Willis CK; Jefimow M; Wojciechowski MS
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():125-32. PubMed ID: 25289993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and expression of PDK4, FOXO1A and DYRK1A from the hibernating greater horseshoe bat (Rhinolophus ferrumequinum).
    Chen J; Sun M; Liang B; Xu A; Zhang S; Wu D
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Feb; 146(2):166-71. PubMed ID: 17140834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis).
    Wojciechowski MS; Jefimow M; Tegowska E
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):828-40. PubMed ID: 16891137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperatures and locations used by hibernating bats, including Myotis sodalis (Indiana bat), in a limestone mine: implications for conservation and management.
    Brack V
    Environ Manage; 2007 Nov; 40(5):739-46. PubMed ID: 17874161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Up-regulation of a thioredoxin peroxidase-like protein, proliferation-associated gene, in hibernating bats.
    Eddy SF; McNally JD; Storey KB
    Arch Biochem Biophys; 2005 Mar; 435(1):103-11. PubMed ID: 15680912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hibernation energetics of free-ranging little brown bats.
    Jonasson KA; Willis CK
    J Exp Biol; 2012 Jun; 215(Pt 12):2141-9. PubMed ID: 22623203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of peroxisome proliferator-activated receptor alpha to hibernation in bats.
    Han Y; Zheng G; Yang T; Zhang S; Dong D; Pan YH
    BMC Evol Biol; 2015 May; 15():88. PubMed ID: 25980933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential Expression of Hepatic Genes of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) between the Summer Active and Winter Torpid States.
    Xiao Y; Wu Y; Sun K; Wang H; Zhang B; Song S; Du Z; Jiang T; Shi L; Wang L; Lin A; Yue X; Li C; Chen T; Feng J
    PLoS One; 2015; 10(12):e0145702. PubMed ID: 26698122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein kinase C from bat brain: the enzyme from a hibernating mammal.
    Mehrani H; Storey KB
    Neurochem Int; 1997 Jul; 31(1):139-50. PubMed ID: 9185174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Critical roles of mitochondria in brain activities of torpid Myotis ricketti bats revealed by a proteomic approach.
    Zhang Y; Pan YH; Yin Q; Yang T; Dong D; Liao CC; Zhang S
    J Proteomics; 2014 Jun; 105():266-84. PubMed ID: 24434588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic analysis of miRNAs in an extreme mammalian hibernator, the Arctic ground squirrel.
    Liu Y; Hu W; Wang H; Lu M; Shao C; Menzel C; Yan Z; Li Y; Zhao S; Khaitovich P; Liu M; Chen W; Barnes BM; Yan J
    Physiol Genomics; 2010 Sep; 42A(1):39-51. PubMed ID: 20442247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leptin receptor expression increases in placenta, but not hypothalamus, during gestation in Mus musculus and Myotis lucifugus.
    Zhao J; Townsend KL; Schulz LC; Kunz TH; Li C; Widmaier EP
    Placenta; 2004; 25(8-9):712-22. PubMed ID: 15450389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. White-nose syndrome-affected little brown myotis (Myotis lucifugus) increase grooming and other active behaviors during arousals from hibernation.
    Brownlee-Bouboulis SA; Reeder DM
    J Wildl Dis; 2013 Oct; 49(4):850-9. PubMed ID: 24502712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The resistance of a North American bat species (Eptesicus fuscus) to White-nose Syndrome (WNS).
    Frank CL; Michalski A; McDonough AA; Rahimian M; Rudd RJ; Herzog C
    PLoS One; 2014; 9(12):e113958. PubMed ID: 25437448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis).
    Hecht AM; Braun BC; Krause E; Voigt CC; Greenwood AD; Czirják GÁ
    Sci Rep; 2015 Nov; 5():16604. PubMed ID: 26586174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deeply torpid bats can change position without elevation of body temperature.
    Bartonička T; Bandouchova H; Berková H; Blažek J; Lučan R; Horáček I; Martínková N; Pikula J; Řehák Z; Zukal J
    J Therm Biol; 2017 Jan; 63():119-123. PubMed ID: 28010809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Winter energetics of female Indiana bats Myotis sodalis.
    Day KM; Tomasi TE
    Physiol Biochem Zool; 2014; 87(1):56-64. PubMed ID: 24457921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Similar hibernation physiology in bats across broad geographic ranges.
    McGuire LP; Fuller NW; Dzal YA; Haase CG; Silas KA; Willis CKR; Olson SH; Lausen CL
    J Comp Physiol B; 2022 Jan; 192(1):171-181. PubMed ID: 34426856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and functional studies of leptins from hibernating and non-hibernating bats.
    He L; Pan Y; He G; Lin B; Liao CC; Zuo X; Yuan L
    Gen Comp Endocrinol; 2010 Aug; 168(1):29-35. PubMed ID: 20394750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns.
    Hadj-Moussa H; Moggridge JA; Luu BE; Quintero-Galvis JF; Gaitán-Espitia JD; Nespolo RF; Storey KB
    Sci Rep; 2016 Apr; 6():24627. PubMed ID: 27090740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.