BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24769112)

  • 1. Control of in vivo mineral bone cement degradation.
    Kanter B; Geffers M; Ignatius A; Gbureck U
    Acta Biomater; 2014 Jul; 10(7):3279-87. PubMed ID: 24769112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone regeneration capacity of magnesium phosphate cements in a large animal model.
    Kanter B; Vikman A; Brückner T; Schamel M; Gbureck U; Ignatius A
    Acta Biomater; 2018 Mar; 69():352-361. PubMed ID: 29409867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts.
    Sheikh Z; Zhang YL; Grover L; Merle GE; Tamimi F; Barralet J
    Acta Biomater; 2015 Oct; 26():338-46. PubMed ID: 26300333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated bone regeneration through rational design of magnesium phosphate cements.
    Kaiser F; Schröter L; Stein S; Krüger B; Weichhold J; Stahlhut P; Ignatius A; Gbureck U
    Acta Biomater; 2022 Jun; 145():358-371. PubMed ID: 35443213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trivalent chromium incorporated in a crystalline calcium phosphate matrix accelerates materials degradation and bone formation in vivo.
    Rentsch B; Bernhardt A; Henß A; Ray S; Rentsch C; Schamel M; Gbureck U; Gelinsky M; Rammelt S; Lode A
    Acta Biomater; 2018 Mar; 69():332-341. PubMed ID: 29355718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model.
    Klammert U; Ignatius A; Wolfram U; Reuther T; Gbureck U
    Acta Biomater; 2011 Sep; 7(9):3469-75. PubMed ID: 21658480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biologically mediated resorption of brushite cement in vitro.
    Grover LM; Gbureck U; Wright AJ; Tremayne M; Barralet JE
    Biomaterials; 2006 Apr; 27(10):2178-85. PubMed ID: 16337265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells.
    Grossardt C; Ewald A; Grover LM; Barralet JE; Gbureck U
    Tissue Eng Part A; 2010 Dec; 16(12):3687-95. PubMed ID: 20673025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement.
    Klammert U; Reuther T; Blank M; Reske I; Barralet JE; Grover LM; Kübler AC; Gbureck U
    Acta Biomater; 2010 Apr; 6(4):1529-35. PubMed ID: 19837194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility and resorption of a brushite calcium phosphate cement.
    Theiss F; Apelt D; Brand B; Kutter A; Zlinszky K; Bohner M; Matter S; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2005 Jul; 26(21):4383-94. PubMed ID: 15701367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities.
    Hofmann MP; Mohammed AR; Perrie Y; Gbureck U; Barralet JE
    Acta Biomater; 2009 Jan; 5(1):43-9. PubMed ID: 18799378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of processing conditions of dicalcium phosphate cements on graft resorption and bone formation.
    Sheikh Z; Zhang YL; Tamimi F; Barralet J
    Acta Biomater; 2017 Apr; 53():526-535. PubMed ID: 28213100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium substitution in brushite cements.
    Alkhraisat MH; Cabrejos-Azama J; Rodríguez CR; Jerez LB; Cabarcos EL
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):475-81. PubMed ID: 25428098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line.
    Xia Z; Grover LM; Huang Y; Adamopoulos IE; Gbureck U; Triffitt JT; Shelton RM; Barralet JE
    Biomaterials; 2006 Sep; 27(26):4557-65. PubMed ID: 16720039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cement from magnesium substituted hydroxyapatite.
    Lilley KJ; Gbureck U; Knowles JC; Farrar DF; Barralet JE
    J Mater Sci Mater Med; 2005 May; 16(5):455-60. PubMed ID: 15875256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model.
    Penel G; Leroy N; Van Landuyt P; Flautre B; Hardouin P; Lemaître J; Leroy G
    Bone; 1999 Aug; 25(2 Suppl):81S-84S. PubMed ID: 10458282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effect of strontium and pyrophosphate on the properties of brushite cements.
    Alkhraisat MH; Mariño FT; Rodríguez CR; Jerez LB; Cabarcos EL
    Acta Biomater; 2008 May; 4(3):664-70. PubMed ID: 18206432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical degradation of calcium magnesium phosphate (stanfieldite) based bone replacement materials and the effect on their cytocompatibility.
    Schaufler C; Schmitt AM; Moseke C; Stahlhut P; Geroneit I; Brückner M; Meyer-Lindenberg A; Vorndran E
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36541469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a porosity measurement method for wet calcium phosphate cements.
    Ajaxon I; Maazouz Y; Ginebra MP; Öhman C; Persson C
    J Biomater Appl; 2015 Nov; 30(5):526-36. PubMed ID: 26163278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes.
    Sanzana ES; Navarro M; Macule F; Suso S; Planell JA; Ginebra MP
    Acta Biomater; 2008 Nov; 4(6):1924-33. PubMed ID: 18539102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.