These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24769131)

  • 1. Comparative engineering of Escherichia coli for cellobiose utilization: Hydrolysis versus phosphorolysis.
    Shin HD; Wu J; Chen R
    Metab Eng; 2014 Jul; 24():9-17. PubMed ID: 24769131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms.
    Rutter C; Chen R
    Biotechnol Lett; 2014 Feb; 36(2):301-7. PubMed ID: 24101240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose.
    Vinuselvi P; Lee SK
    Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Escherichia coli cells for cellobiose assimilation through a phosphorolytic mechanism.
    Sekar R; Shin HD; Chen R
    Appl Environ Microbiol; 2012 Mar; 78(5):1611-4. PubMed ID: 22194295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.
    Ha SJ; Galazka JM; Kim SR; Choi JH; Yang X; Seo JH; Glass NL; Cate JH; Jin YS
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):504-9. PubMed ID: 21187422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization.
    Fox JM; Levine SE; Blanch HW; Clark DS
    Biotechnol J; 2012 Mar; 7(3):361-73. PubMed ID: 22228702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced glycolic acid yield through xylose and cellobiose utilization by metabolically engineered Escherichia coli.
    Cabulong RB; Bañares AB; Nisola GM; Lee WK; Chung WJ
    Bioprocess Biosyst Eng; 2021 Jun; 44(6):1081-1091. PubMed ID: 33527231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Ha SJ; Kim SR; Kim H; Du J; Cate JH; Jin YS
    Bioresour Technol; 2013 Dec; 149():525-31. PubMed ID: 24140899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature.
    Chen R
    Bioengineered; 2015; 6(2):69-72. PubMed ID: 25587851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose.
    Lee J; Saddler JN; Um Y; Woo HM
    Microb Cell Fact; 2016 Jan; 15():20. PubMed ID: 26801253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.
    Chen Y; Wu Y; Zhu B; Zhang G; Wei N
    PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W; Reyes LH; Michener WE; Maness PC; Chou KJ
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.
    Saitoh S; Hasunuma T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous consumption of cellobiose and xylose by
    Zheng Z; Jiang T; Zou L; Ouyang S; Zhou J; Lin X; He Q; Wang L; Yu B; Xu H; Ouyang J
    Biotechnol Biofuels; 2018; 11():320. PubMed ID: 30519284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR; Park YC; Jin YS; Seo JH
    Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica.
    Ryu S; Hipp J; Trinh CT
    Appl Environ Microbiol; 2016 Feb; 82(4):1334-1345. PubMed ID: 26682853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous production of d-lactic acid from cellobiose in cell recycle fermentation using β-glucosidase-displaying Escherichia coli.
    Aso Y; Tsubaki M; Dang Long BH; Murakami R; Nagata K; Okano H; Phuong Dung NT; Ohara H
    J Biosci Bioeng; 2019 Apr; 127(4):441-446. PubMed ID: 30316699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.