BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24769192)

  • 1. Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily.
    Baier F; Tokuriki N
    J Mol Biol; 2014 Jun; 426(13):2442-56. PubMed ID: 24769192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes.
    Baier F; Chen J; Solomonson M; Strynadka NC; Tokuriki N
    ACS Chem Biol; 2015 Jul; 10(7):1684-93. PubMed ID: 25856271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of β-lactamases and enzyme promiscuity.
    Fröhlich C; Chen JZ; Gholipour S; Erdogan AN; Tokuriki N
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 34100551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evolutionary classification of the metallo-beta-lactamase fold proteins.
    Aravind L
    In Silico Biol; 1999; 1(2):69-91. PubMed ID: 11471246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergent evolution of the thiolase superfamily and chalcone synthase family.
    Jiang C; Kim SY; Suh DY
    Mol Phylogenet Evol; 2008 Dec; 49(3):691-701. PubMed ID: 18824113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A promiscuous ancestral enzyme´s structure unveils protein variable regions of the highly diverse metallo-β-lactamase family.
    Perez-Garcia P; Kobus S; Gertzen CGW; Hoeppner A; Holzscheck N; Strunk CH; Huber H; Jaeger KE; Gohlke H; Kovacic F; Smits SHJ; Streit WR; Chow J
    Commun Biol; 2021 Jan; 4(1):132. PubMed ID: 33514861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme promiscuity: evolutionary and mechanistic aspects.
    Khersonsky O; Roodveldt C; Tawfik DS
    Curr Opin Chem Biol; 2006 Oct; 10(5):498-508. PubMed ID: 16939713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Activity BLEG-1 from
    Au SX; Dzulkifly NS; Muhd Noor ND; Matsumura H; Raja Abdul Rahman RNZ; Normi YM
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual activity of PNGM-1 pinpoints the evolutionary origin of subclass B3 metallo-
    Lee JH; Takahashi M; Jeon JH; Kang LW; Seki M; Park KS; Hong MK; Park YS; Kim TY; Karim AM; Lee JH; Nashimoto M; Lee SH
    Emerg Microbes Infect; 2019; 8(1):1688-1700. PubMed ID: 31749408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily.
    Bebrone C
    Biochem Pharmacol; 2007 Dec; 74(12):1686-701. PubMed ID: 17597585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS; Nam SH; Lee JK; Yoon CN; Mannervik B; Benkovic SJ; Kim HS
    Science; 2006 Jan; 311(5760):535-8. PubMed ID: 16439663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity.
    Rasia RM; Ceolín M; Vila AJ
    Protein Sci; 2003 Jul; 12(7):1538-46. PubMed ID: 12824499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first crystal structure of an archaeal metallo-beta-lactamase superfamily protein; ST1585 from Sulfolobus tokodaii.
    Shimada A; Ishikawa H; Nakagawa N; Kuramitsu S; Masui R
    Proteins; 2010 Aug; 78(10):2399-402. PubMed ID: 20544975
    [No Abstract]   [Full Text] [Related]  

  • 16. Evolutionary insights into the active-site structures of the metallo-β-lactamase superfamily from a classification study with support vector machine.
    Wang L; Yang L; Feng YL; Zhang H
    J Biol Inorg Chem; 2020 Oct; 25(7):1023-1034. PubMed ID: 32945939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic and binding poly-reactivities shared by two unrelated proteins: The potential role of promiscuity in enzyme evolution.
    James LC; Tawfik DS
    Protein Sci; 2001 Dec; 10(12):2600-7. PubMed ID: 11714928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of phosphotriesterase activities of the metallo-β-lactamase family: A theoretical study.
    Zhang H; Yang L; Yan LF; Liao RZ; Tian WQ
    J Inorg Biochem; 2018 Jul; 184():8-14. PubMed ID: 29635098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-function-stability relationships in proteins from datasets of functionally annotated variants: the case of TEM β-lactamases.
    Abriata LA; Salverda ML; Tomatis PE
    FEBS Lett; 2012 Sep; 586(19):3330-5. PubMed ID: 22850115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp.
    Luo XJ; Kong XD; Zhao J; Chen Q; Zhou J; Xu JH
    Biotechnol Bioeng; 2014 Oct; 111(10):1920-30. PubMed ID: 24771278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.