BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 24769394)

  • 1. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress.
    Wang YP; Zhou LS; Zhao YZ; Wang SW; Chen LL; Liu LX; Ling ZQ; Hu FJ; Sun YP; Zhang JY; Yang C; Yang Y; Xiong Y; Guan KL; Ye D
    EMBO J; 2014 Jun; 33(12):1304-20. PubMed ID: 24769394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT2 controls the pentose phosphate switch.
    Wu LE; Sinclair DA
    EMBO J; 2014 Jun; 33(12):1287-8. PubMed ID: 24825350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation.
    Xu SN; Wang TS; Li X; Wang YP
    Sci Rep; 2016 Sep; 6():32734. PubMed ID: 27586085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HSPB1 Enhances SIRT2-Mediated G6PD Activation and Promotes Glioma Cell Proliferation.
    Ye H; Huang H; Cao F; Chen M; Zheng X; Zhan R
    PLoS One; 2016; 11(10):e0164285. PubMed ID: 27711253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influenza Virus Down-Modulates G6PD Expression and Activity to Induce Oxidative Stress and Promote Its Replication.
    De Angelis M; Amatore D; Checconi P; Zevini A; Fraternale A; Magnani M; Hiscott J; De Chiara G; Palamara AT; Nencioni L
    Front Cell Infect Microbiol; 2021; 11():804976. PubMed ID: 35071051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway.
    Cao L; Zhang D; Chen J; Qin YY; Sheng R; Feng X; Chen Z; Ding Y; Li M; Qin ZH
    Free Radic Biol Med; 2017 Nov; 112():433-444. PubMed ID: 28823591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.
    Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G
    Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Calcium/Calmodulin-Dependent Protein Kinase IIα Suppresses Oxidative Stress in Cerebral Ischemic Rats Through Targeting Glucose 6-Phosphate Dehydrogenase.
    Wei Y; Wang R; Teng J
    Neurochem Res; 2019 Jul; 44(7):1613-1620. PubMed ID: 30919283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase.
    Xu Y; Li F; Lv L; Li T; Zhou X; Deng CX; Guan KL; Lei QY; Xiong Y
    Cancer Res; 2014 Jul; 74(13):3630-42. PubMed ID: 24786789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo.
    Dong LH; Li L; Song Y; Duan ZL; Sun SG; Lin YL; Miao SB; Yin YJ; Shu YN; Li H; Chen P; Zhao LL; Han M
    Circ Res; 2015 Sep; 117(8):684-94. PubMed ID: 26291555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B₁-mediated cytotoxicity.
    Lin HR; Wu CC; Wu YH; Hsu CW; Cheng ML; Chiu DT
    J Proteome Res; 2013 Jul; 12(7):3434-48. PubMed ID: 23742107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells.
    Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense.
    Zhou L; Wang F; Sun R; Chen X; Zhang M; Xu Q; Wang Y; Wang S; Xiong Y; Guan KL; Yang P; Yu H; Ye D
    EMBO Rep; 2016 Jun; 17(6):811-22. PubMed ID: 27113762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose 6-P Dehydrogenase-An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise.
    García-Domínguez E; Carretero A; Viña-Almunia A; Domenech-Fernandez J; Olaso-Gonzalez G; Viña J; Gomez-Cabrera MC
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons.
    Zhao G; Zhao Y; Wang X; Xu Y
    Neurochem Int; 2012 Jul; 61(2):146-55. PubMed ID: 22580330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer.
    Yang HC; Wu YH; Yen WC; Liu HY; Hwang TL; Stern A; Chiu DT
    Cells; 2019 Sep; 8(9):. PubMed ID: 31500396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspirin inhibits glucose‑6‑phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites.
    Ai G; Dachineni R; Kumar DR; Alfonso LF; Marimuthu S; Bhat GJ
    Mol Med Rep; 2016 Aug; 14(2):1726-32. PubMed ID: 27356773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress.
    Ho HY; Cheng ML; Shiao MS; Chiu DT
    Free Radic Biol Med; 2013 Jan; 54():71-84. PubMed ID: 23142419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid phosphorylation of glucose-6-phosphate dehydrogenase by casein kinase 2 sustains redox homeostasis under ionizing radiation.
    Hao Y; Ren T; Huang X; Li M; Lee JH; Chen Q; Liu R; Tang Q
    Redox Biol; 2023 Sep; 65():102810. PubMed ID: 37478541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.