These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 24769411)

  • 1. Ozone-initiated VOC and particle emissions from a cleaning agent and an air freshener: risk assessment of acute airway effects.
    Nørgaard AW; Kudal JD; Kofoed-Sørensen V; Koponen IK; Wolkoff P
    Environ Int; 2014 Jul; 68():209-18. PubMed ID: 24769411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.
    Nørgaard AW; Kofoed-Sørensen V; Mandin C; Ventura G; Mabilia R; Perreca E; Cattaneo A; Spinazzè A; Mihucz VG; Szigeti T; de Kluizenaar Y; Cornelissen HJ; Trantallidi M; Carrer P; Sakellaris I; Bartzis J; Wolkoff P
    Environ Sci Technol; 2014 Nov; 48(22):13331-9. PubMed ID: 25299176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.
    Singer BC; Destaillats H; Hodgson AT; Nazaroff WW
    Indoor Air; 2006 Jun; 16(3):179-91. PubMed ID: 16683937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of ozone concentration and temperature on ultra-fine particle and gaseous volatile organic compound formations generated during the ozone-initiated reactions with emitted terpenes from a car air freshener.
    Lamorena RB; Lee W
    J Hazard Mater; 2008 Oct; 158(2-3):471-7. PubMed ID: 18336999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of air freshener emission: the potential health effects.
    Kim S; Hong SH; Bong CK; Cho MH
    J Toxicol Sci; 2015; 40(5):535-50. PubMed ID: 26354370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone.
    Liu X; Mason M; Krebs K; Sparks L
    Environ Sci Technol; 2004 May; 38(10):2802-12. PubMed ID: 15212253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute airway effects of ozone-initiated d-limonene chemistry: importance of gaseous products.
    Wolkoff P; Clausen PA; Larsen K; Hammer M; Larsen ST; Nielsen GD
    Toxicol Lett; 2008 Oct; 181(3):171-6. PubMed ID: 18723085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of an ion generator on indoor air quality in a residential room.
    Waring MS; Siegel JA
    Indoor Air; 2011 Aug; 21(4):267-76. PubMed ID: 21118308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human reference values for acute airway effects of five common ozone-initiated terpene reaction products in indoor air.
    Wolkoff P; Larsen ST; Hammer M; Kofoed-Sørensen V; Clausen PA; Nielsen GD
    Toxicol Lett; 2013 Jan; 216(1):54-64. PubMed ID: 23164675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafine particle emission from floor cleaning products.
    Stabile L; De Luca G; Pacitto A; Morawska L; Avino P; Buonanno G
    Indoor Air; 2021 Jan; 31(1):63-73. PubMed ID: 32638396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafine particles generated from coloring with scented markers in the presence of ozone.
    Fung CC; Shu S; Zhu Y
    Indoor Air; 2014 Oct; 24(5):503-10. PubMed ID: 24547888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor air chemistry: Terpene reaction products and airway effects.
    Wolkoff P
    Int J Hyg Environ Health; 2020 Apr; 225():113439. PubMed ID: 32044535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ozone reaction with clothing and its initiated VOC emissions in an environmental chamber.
    Rai AC; Guo B; Lin CH; Zhang J; Pei J; Chen Q
    Indoor Air; 2014 Feb; 24(1):49-58. PubMed ID: 23841649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: chamber studies of particle and reactive oxygen species formation.
    Chen X; Hopke PK; Carter WP
    Environ Sci Technol; 2011 Jan; 45(1):276-82. PubMed ID: 21121662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The health significance of gas- and particle-phase terpene oxidation products: a review.
    Rohr AC
    Environ Int; 2013 Oct; 60():145-62. PubMed ID: 24036325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airway effects of repeated exposures to ozone-initiated limonene oxidation products as model of indoor air mixtures.
    Wolkoff P; Clausen PA; Larsen ST; Hammer M; Nielsen GD
    Toxicol Lett; 2012 Mar; 209(2):166-72. PubMed ID: 22212438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occupational exposure to gaseous and particulate contaminants originating from additive manufacturing of liquid, powdered, and filament plastic materials and related post-processes.
    Väisänen AJK; Hyttinen M; Ylönen S; Alonen L
    J Occup Environ Hyg; 2019 Mar; 16(3):258-271. PubMed ID: 30540539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the effects of ozone oxidation on redox-cycling activity of two-stroke engine exhaust particles.
    McWhinney RD; Gao SS; Zhou S; Abbatt JP
    Environ Sci Technol; 2011 Mar; 45(6):2131-6. PubMed ID: 21341691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ozone and limonene in indoor air: a source of submicron particle exposure.
    Wainman T; Zhang J; Weschler CJ; Lioy PJ
    Environ Health Perspect; 2000 Dec; 108(12):1139-45. PubMed ID: 11133393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terpene exhaust emissions and impact ozone modeling from cannabis plants at commercial indoor cultivation facilities in Colorado.
    Urso K; Frazier A; Heald S; Khlystov A
    J Air Waste Manag Assoc; 2022 Aug; 72(8):828-848. PubMed ID: 35254220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.