These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24769500)

  • 1. Information processing through a bio-based redox capacitor: signatures for redox-cycling.
    Liu Y; Kim E; White IM; Bentley WE; Payne GF
    Bioelectrochemistry; 2014 Aug; 98():94-102. PubMed ID: 24769500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.
    Kim E; Gordonov T; Bentley WE; Payne GF
    Anal Chem; 2013 Feb; 85(4):2102-8. PubMed ID: 23311878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-capacitor to connect electrochemistry to redox-biology.
    Kim E; Leverage WT; Liu Y; White IM; Bentley WE; Payne GF
    Analyst; 2014 Jan; 139(1):32-43. PubMed ID: 24175311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification.
    Kang M; Mun C; Jung HS; Ansah IB; Kim E; Yang H; Payne GF; Kim DH; Park SG
    Nanoscale; 2020 Feb; 12(6):3668-3676. PubMed ID: 31793610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors.
    Akanda MR; Choe YL; Yang H
    Anal Chem; 2012 Jan; 84(2):1049-55. PubMed ID: 22208164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.
    Yan K; Liu Y; Guan Y; Bhokisham N; Tsao CY; Kim E; Shi XW; Wang Q; Bentley WE; Payne GF
    Colloids Surf B Biointerfaces; 2018 Sep; 169():470-477. PubMed ID: 29852436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes.
    Park S; Singh A; Kim S; Yang H
    Anal Chem; 2014 Feb; 86(3):1560-6. PubMed ID: 24428396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluidic redox cycling amplification for the selective detection of catechol.
    Wolfrum B; Zevenbergen M; Lemay S
    Anal Chem; 2008 Feb; 80(4):972-7. PubMed ID: 18193890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes.
    Kwon SJ; Yang H; Jo K; Kwak J
    Analyst; 2008 Nov; 133(11):1599-604. PubMed ID: 18936839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofabricated film with enzymatic and redox-capacitor functionalities to harvest and store electrons.
    Liba BD; Kim E; Martin AN; Liu Y; Bentley WE; Payne GF
    Biofabrication; 2013 Mar; 5(1):015008. PubMed ID: 23303212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria.
    Li Y; Liu Y; Kim E; Song Y; Tsao CY; Teng Z; Gao T; Mei L; Bentley WE; Payne GF; Wang Q
    Carbohydr Polym; 2018 Sep; 195():505-514. PubMed ID: 29805005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic(III) detection using electrochemical-chemical-chemical redox cycling at bare indium-tin oxide electrodes.
    Jeong J; Das J; Choi M; Jo J; Aziz MA; Yang H
    Analyst; 2014 Nov; 139(22):5813-7. PubMed ID: 25209319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species.
    Liu H; Qu X; Kim E; Lei M; Dai K; Tan X; Xu M; Li J; Liu Y; Shi X; Li P; Payne GF; Liu C
    Biomaterials; 2018 Apr; 162():109-122. PubMed ID: 29438879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paraquat-Melanin Redox-Cycling: Evidence from Electrochemical Reverse Engineering.
    Kim E; Leverage WT; Liu Y; Panzella L; Alfieri ML; Napolitano A; Bentley WE; Payne GF
    ACS Chem Neurosci; 2016 Aug; 7(8):1057-67. PubMed ID: 27246915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular assembly of redox-conductive ferrocene-streptavidin conjugates--towards bio-electrochemical devices.
    Padeste C; Steiger B; Grubelnik A; Tiefenauer L
    Biosens Bioelectron; 2004 Oct; 20(3):545-52. PubMed ID: 15494238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-cycling and H2O2 generation by fabricated catecholic films in the absence of enzymes.
    Kim E; Liu Y; Baker CJ; Owens R; Xiao S; Bentley WE; Payne GF
    Biomacromolecules; 2011 Apr; 12(4):880-8. PubMed ID: 21319794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic oxidation of ascorbate by heme-FeIII/heme-FeII redox couple of the HRP and its effect on the electrochemical behaviour of an L-lactate biosensor.
    Ledru S; Boujtita M
    Bioelectrochemistry; 2004 Aug; 64(1):71-8. PubMed ID: 15219249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive and selective trypsin detection using redox cycling in the presence of L-ascorbic acid.
    Park S; Yang H
    Analyst; 2014 Aug; 139(16):4051-5. PubMed ID: 24955437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose-oxidase label-based redox cycling for an incubation period-free electrochemical immunosensor.
    Singh A; Park S; Yang H
    Anal Chem; 2013 May; 85(10):4863-8. PubMed ID: 23663141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin.
    Yang Y; Yu YY; Wang YZ; Zhang CL; Wang JX; Fang Z; Lv H; Zhong JJ; Yong YC
    Biosens Bioelectron; 2017 Dec; 98():338-344. PubMed ID: 28709085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.